2.3. 2 Addition of Water to C=C Bonds
Buch
Herausgeber: Faber, K.; Fessner, W.-D.; Turner, N. J.
Titel: Biocatalysis Organic Synthesis 2
Print ISBN: 9783131741615; Online ISBN: 9783131975317; Buch-DOI: 10.1055/b-003-125813
1st edition © 2015. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Fachgebiete: Organische Chemie
Science of Synthesis Reference Libraries
Übergeordnete Publikation
Titel: Science of Synthesis
DOI: 10.1055/b-00000101
Typ: Mehrbändiges Werk
Abstract
While chemists struggle to find efficient methods to perform the asymmetric addition of water, nature employs countless enzymes (called hydratases or hydro-lyases) to perform this reaction using substrates with both activated and nonactivated double bonds. However, compared to the vast number of hydratases involved in metabolic pathways in nature, only a few are described for their use in organic synthesis. Nevertheless, their potential in asymmetric catalysis has been recognized and some hydratases are used on a large scale in industrial processes. Since hydratases perform the addition of water, water is used as both a solvent and a reagent, opening up a very efficient and green route to both secondary and tertiary alcohols. This chapter focuses on hydratases that catalyze interesting reactions and are tested beyond their biochemical characterization.
Schlüsselwörter
acetylene hydratase - aconitase - carotenoid hydratases - citraconase - fumarase - hydratase - hydratase–tautomerase bifunctionality - hydro-lyase - kievitone hydratase - limonene hydratase - linalool dehydrogenase–isomerase - malease - oleate hydratase - phaseollidin hydratase - urocanase - water addition- 5 Hahn H.-D, Dämbkes G, Rupprich N, Bahl H, Frey GD. Ullmannʼs Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany 2013
- 6 Falbe J, Bahrmann H, Lipps W, Mayer D, Frey GD. Ullmannʼs Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany 2013
- 7 Sheldon RA, Arends IWCE, Hanefeld U. Green Chemistry and Catalysis. Wiley-VCH; Weinheim, Germany 2007
- 10 van der Werf MJ, van den Tweel WJJ, Kamphuis J, Hartmans S, de Bont JAM. Trends Biotechnol. 1994; 12: 95
- 11 van Leeuwen BNM, van der Wulp AM, Duijnstee I, van Maris AJA, Straathof AJJ. Appl. Microbiol. Biotechnol. 2012; 93: 1377
- 13 Mohrig JR, Moerke KA, Cloutier DL, Lane BD, Person EC, Onasch TB. Science (Washington, D. C.) 1995; 269: 527
- 26 Niehaus Jr WG, Kisic A, Torkelson A, Bednarczyk DJ, Schroepfer Jr GJ. J. Biol. Chem. 1970; 245: 3790
- 31 Gocho S, Tabogami N, Inagaki M, Kawabata C, Komai T. Biosci., Biotechnol., Biochem. 1995; 59: 1571
- 37 Song J.-W, Jeon E.-Y, Song D.-H, Jang H.-Y, Bornscheuer UT, Oh D.-K, Park J.-B. Angew. Chem. 2013; 125: 2594 Angew. Chem. Int. Ed. 2013; 52: 2534
- 50 Pearlman PS, Chen C, Botes AL, Conradie AVE. US 2013 0 189 753, 2013 Chem. Abstr.. 2013 158 288625
- 54 Bicas JL, Barros FFC, Wagner R, Godoy HT, Pastore GM. J. Ind. Microbiol. Biotechnol. 2008; 35: 1061
- 57 Rottava I, Toniazzo G, Cortina PF, Martello E, Grando CE, Lerin LA, Treichel H, Mossi AJ, de Oliveira D, Cansian RL, Antunes OAC, Oestreicher EG. LWT–Food Sci. Technol. 2010; 43: 1128
- 62 Savithiry N, Cheong T, Oriel P, Biotechnology for Fuels and Chemicals Davison BH, Wyman CE, Finkelstein M. Humana New York 1997; 63–65. 213
- 64 Pescheck M, Mirata MA, Brauer B, Krings U, Berger RG, Schrader J. J. Ind. Microbiol. Biotechnol. 2009; 36: 827
- 68 Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH, Einsle O. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 3073
- 69 Einsle O, Niessen H, Abt DJ, Seiffert G, Schink B, Huber R, Messerschmidt A, Kroneck PMH. Acta Crystallogr., Sect. F 2005; 61: 299
- 75 Span I, Wang K, Wang W, Zhang Y, Bacher A, Eisenreich W, Li K, Schulz C, Oldfield E, Groll M. Nature Commun. 2012; 3: 1042
- 79 Woods SA, Schwartzbach SD, Guest JR. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1988; 954: 14
- 84 Weaver T, Lees M, Zaitsev V, Zaitseva I, Duke E, Lindley P, McSweeny S, Svensson A, Keruchenko J, Keruchenko I, Gladilin K, Banaszak L. J. Mol. Biol. 1998; 280: 431
- 85 Yang J, Wang Y, Woolridge EM, Arora V, Petsko GA, Kozarich JW, Ringe D. Biochemistry 2004; 43: 10424
- 106 Rao MRR, Subramanian SS, Rahatekar HI, Paranjape SV. Biochem. Biophys. Res. Commun. 1963; 12: 78
- 110 Williams CH, Stillman TJ, Barynin VV, Sedelnikova SE, Tang Y, Green J, Guest JR, Artymiuk PJ. Nature Struct. Mol. Biol. 2002; 9: 447
- 112 Kennedy MC, Mende-Mueller L, Blondin GA, Beinert H. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 11730
- 113 Haile DJ, Rouault TA, Harford JB, Kennedy MC, Blondin GA, Beinert H, Klausner RD. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 11735
- 117 Grueninger D, Treiber N, Ziegler MOP, Koetter JWA, Schulze M.-S, Schulz GE. Science (Washington, D. C.) 2008; 319: 206
- 121 Schubert C, Zhao Y, Shin J.-H, Rétey J. Angew. Chem. 1994; 106: 1331 Angew. Chem. Int. Ed. Engl. 1994; 33: 1279
- 126 Poelarends GJ, Serrano H, Johnson WH, Hoffman DW, Whitman CP. J. Am. Chem. Soc. 2004; 126: 15658
- 127 Almrud JJ, Poelarends GJ, Johnson WH, Serrano H, Hackert ML, Whitman CP. Biochemistry 2005; 44: 14818
- 134 Bhaumik P, Koski MK, Glumoff T, Hiltunen JK, Wierenga RK. Curr. Opin. Struct. Biol. 2005; 15: 621
- 135 Bell AF, Feng Y, Hofstein HA, Parikh S, Wu J, Rudolph MJ, Kisker C, Whitty A, Tonge PJ. Chem. Biol. 2002; 9: 1247
- 142 Hasegawa J, Ogura M, Kanema H, Noda N, Kawaharada H, Watanabe K. J. Ferment. Technol. 1982; 60: 501
- 161 Masai E, Harada K, Peng X, Kitayama H, Katayama Y, Fukuda M. Appl. Environ. Microbiol. 2002; 68: 4416
- 162 Leonard PM, Brzozowski AM, Lebedev A, Marshall CM, Smith DJ, Verma CS, Walton NJ, Grogan G. Acta Crystallogr., Sect. D 2006; 62: 1494
- 163 Leonard PM, Marshall CM, Dodson EJ, Walton NJ, Grogan G. Acta Crystallogr., Sect. D 2004; 60: 2343
- 164 Bennett JP, Bertin L, Moulton B, Fairlamb IJS, Brzozowski AM, Walton NJ, Grogan G. Biochem. J. 2008; 414: 281