Faber, K. et al.: 2015 Science of Synthesis: Biocatalysis Organic Synthesis 2 DOI: 10.1055/sos-SD-215-00136
Biocatalysis in Organic Synthesis 2

2.3.2 Addition of Water to C=C Bonds

Weitere Informationen

Buch

Herausgeber: Faber, K.; Fessner, W.-D.; Turner, N. J.

Autoren: Au, S. K.; Bartsch, S.; Beecher, D.; Boffi, A.; Bommarius, A. S.; Bonamore, A.; Brown, G.; Busto, E.; Clapés, P.; Faber, K.; Fischereder, E.-M.; France, S. P.; Fuchs, C. S.; Geertsema, E. M.; Glieder, A.; Gruber-Khadjawi, M.; Hall, M.; Hanefeld, U.; Hussain, S.; Ilari, A.; Janssen, D. B.; Kaluđerović, G. N.; Kroutil, W.; Lamm, A. S.; Leipold, F.; Lewin, R.; Li, A. T.; Li, Z.; Majerić Elenkov, M.; Micklefield, J.; Moody, T. S.; Mix, S.; Müller, M.; Poelarends, G. J.; Pohl, M.; Pressnitz, D.; Resch, V.; Richter, N.; Rosazza, J. P. N.; Schreckenbach, H. F.; Simon, R. C.; Steiner, K.; Szymański, W.; Thompson, M. L.; Turner, N. J.; Venkitasubramanian, P.; Vogel, A.; Wechsler, C.; Wessjohann, L. A.; Wohlgemuth, R.

Titel: Biocatalysis Organic Synthesis 2

Print ISBN: 9783131741615; Online ISBN: 9783131975317; Buch-DOI: 10.1055/b-003-125813

Fachgebiete: Organische Chemie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Typ: Mehrbändiges Werk

 


Abstract

While chemists struggle to find efficient methods to perform the asymmetric addition of water, nature employs countless enzymes (called hydratases or hydro-lyases) to perform this reaction using substrates with both activated and nonactivated double bonds. However, compared to the vast number of hydratases involved in metabolic pathways in nature, only a few are described for their use in organic synthesis. Nevertheless, their potential in asymmetric catalysis has been recognized and some hydratases are used on a large scale in industrial processes. Since hydratases perform the addition of water, water is used as both a solvent and a reagent, opening up a very efficient and green route to both secondary and tertiary alcohols. This chapter focuses on hydratases that catalyze interesting reactions and are tested beyond their biochemical characterization.

 
  • 2 Wang S, Zhang Z, Chi C, Wu G, Ren J, Wang Z, Huang M, Jiang Y. React. Funct. Polym. 2008; 68: 424
  • 5 Hahn H.-D, Dämbkes G, Rupprich N, Bahl H, Frey GD. Ullmannʼs Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany 2013
  • 6 Falbe J, Bahrmann H, Lipps W, Mayer D, Frey GD. Ullmannʼs Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany 2013
  • 11 van Leeuwen BNM, van der Wulp AM, Duijnstee I, van Maris AJA, Straathof AJJ. Appl. Microbiol. Biotechnol. 2012; 93: 1377
  • 12 Tokoroyama T. Eur. J. Org. Chem. 2010; 2009
  • 31 Gocho S, Tabogami N, Inagaki M, Kawabata C, Komai T. Biosci., Biotechnol., Biochem. 1995; 59: 1571
  • 36 Jeon E.-Y, Lee J.-H, Yang K.-M, Joo Y.-C, Oh D.-K, Park J.-B. Process Biochem. 2012; 47: 941
  • 37 Song J.-W, Jeon E.-Y, Song D.-H, Jang H.-Y, Bornscheuer UT, Oh D.-K, Park J.-B. Angew. Chem. 2013; 125: 2594 Angew. Chem. Int. Ed. 2013; 52: 2534
  • 57 Rottava I, Toniazzo G, Cortina PF, Martello E, Grando CE, Lerin LA, Treichel H, Mossi AJ, de Oliveira D, Cansian RL, Antunes OAC, Oestreicher EG. LWT–Food Sci. Technol. 2010; 43: 1128
  • 62 Savithiry N, Cheong T, Oriel P, Biotechnology for Fuels and Chemicals Davison BH, Wyman CE, Finkelstein M. Humana New York 1997; 63–65. 213
  • 68 Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH, Einsle O. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 3073
  • 69 Einsle O, Niessen H, Abt DJ, Seiffert G, Schink B, Huber R, Messerschmidt A, Kroneck PMH. Acta Crystallogr., Sect. F 2005; 61: 299
  • 75 Span I, Wang K, Wang W, Zhang Y, Bacher A, Eisenreich W, Li K, Schulz C, Oldfield E, Groll M. Nature Commun. 2012; 3: 1042
  • 84 Weaver T, Lees M, Zaitsev V, Zaitseva I, Duke E, Lindley P, McSweeny S, Svensson A, Keruchenko J, Keruchenko I, Gladilin K, Banaszak L. J. Mol. Biol. 1998; 280: 431
  • 85 Yang J, Wang Y, Woolridge EM, Arora V, Petsko GA, Kozarich JW, Ringe D. Biochemistry 2004; 43: 10424
  • 88 Yamamoto K, Tosa T, Yamashita K, Chibata I. Eur. J. Appl. Microbiol. Biotechnol. 1976; 3: 169
  • 110 Williams CH, Stillman TJ, Barynin VV, Sedelnikova SE, Tang Y, Green J, Guest JR, Artymiuk PJ. Nature Struct. Mol. Biol. 2002; 9: 447
  • 113 Haile DJ, Rouault TA, Harford JB, Kennedy MC, Blondin GA, Beinert H, Klausner RD. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 11735
  • 115 Tyagi R, Eswaramoorthy S, Burley SK, Raushel FM, Swaminathan S. Biochemistry 2008; 47: 5608
  • 117 Grueninger D, Treiber N, Ziegler MOP, Koetter JWA, Schulze M.-S, Schulz GE. Science (Washington, D. C.) 2008; 319: 206
  • 121 Schubert C, Zhao Y, Shin J.-H, Rétey J. Angew. Chem. 1994; 106: 1331 Angew. Chem. Int. Ed. Engl. 1994; 33: 1279
  • 127 Almrud JJ, Poelarends GJ, Johnson WH, Serrano H, Hackert ML, Whitman CP. Biochemistry 2005; 44: 14818
  • 142 Hasegawa J, Ogura M, Kanema H, Noda N, Kawaharada H, Watanabe K. J. Ferment. Technol. 1982; 60: 501
  • 147 Zhou BN, Gopalan AS, VanMiddlesworth F, Shieh W.-R, Sih CJ. J. Am. Chem. Soc. 1983; 105: 5925
  • 162 Leonard PM, Brzozowski AM, Lebedev A, Marshall CM, Smith DJ, Verma CS, Walton NJ, Grogan G. Acta Crystallogr., Sect. D 2006; 62: 1494
  • 169 Resch V, Seidler C, Chen B.-S, Degeling I, Hanefeld U. Eur. J. Org. Chem. 2013; 7697
  • 174 Wuensch C, Gross J, Steinkellner G, Gruber K, Glueck SM, Faber K. Angew. Chem. 2013; 125: 2349 Angew. Chem. Int. Ed. 2013; 52: 2293