Faber, K. et al.: 2015 Science of Synthesis: Biocatalysis Organic Synthesis 2 DOI: 10.1055/sos-SD-215-00069
Biocatalysis in Organic Synthesis 2

2.1.4 Enzymatic Carboxylation and Decarboxylation

More Information

Book

Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.

Authors: Au, S. K.; Bartsch, S.; Beecher, D.; Boffi, A.; Bommarius, A. S.; Bonamore, A.; Brown, G.; Busto, E.; Clapés, P.; Faber, K.; Fischereder, E.-M.; France, S. P.; Fuchs, C. S.; Geertsema, E. M.; Glieder, A.; Gruber-Khadjawi, M.; Hall, M.; Hanefeld, U.; Hussain, S.; Ilari, A.; Janssen, D. B.; Kaluđerović, G. N.; Kroutil, W.; Lamm, A. S.; Leipold, F.; Lewin, R.; Li, A. T.; Li, Z.; Majerić Elenkov, M.; Micklefield, J.; Moody, T. S.; Mix, S.; Müller, M.; Poelarends, G. J.; Pohl, M.; Pressnitz, D.; Resch, V.; Richter, N.; Rosazza, J. P. N.; Schreckenbach, H. F.; Simon, R. C.; Steiner, K.; Szymański, W.; Thompson, M. L.; Turner, N. J.; Venkitasubramanian, P.; Vogel, A.; Wechsler, C.; Wessjohann, L. A.; Wohlgemuth, R.

Title: Biocatalysis Organic Synthesis 2

Print ISBN: 9783131741615; Online ISBN: 9783131975317; Book DOI: 10.1055/b-003-125813

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

Carboxylation reactions utilizing whole cells or purified carboxylase/decarboxylase enzymes enable the regioselective formation of new C—C bonds under more benign conditions than are typically used in nonenzymatic transformations such as the Kolbe–Schmitt reaction. A wide variety of substrates have been used in enzymatic carboxylation reactions including phenols, styrenes, pyrroles, and indoles.

Enzymatic decarboxylation can be used to transform simple achiral carboxylic acid substrates into more valuable homochiral building blocks through stereoselective C—H or C—C bond formation. For example, arylmalonate decarboxylases catalyze the enantioselective decarboxylative protonation of α-aryl- and α-alkenylmalonic acids under mild conditions and with excellent enantioselectivity. In addition, thiamine diphosphate dependent decarboxylases catalyze C—C bond formation with a broad range of α-keto acid and aldehyde substrates to produce homochiral α-hydroxy ketones.

 
  • 1 Firestine SM, Poon S.-W, Mueller EJ, Stubbe J, Davisson VJ. Biochemistry 1994; 33: 11927
  • 2 Glueck SM, Gümüs S, Fabian WMF, Faber K. Chem. Soc. Rev. 2010; 39: 313
  • 3 Lindsey AS, Jeskey H. Chem. Rev. 1957; 57: 583
  • 4 Kirimura K, Gunji H, Wakayama R, Hattori T, Ishii Y. Biochem. Biophys. Res. Commun. 2010; 394: 279
  • 5 Matsui T, Yoshida T, Yoshimura T, Nagasawa T. Appl. Microbiol. Biotechnol. 2006; 73: 95
  • 6 Wuensch C, Glueck SM, Gross J, Koszelewski D, Schober M, Faber K. Org. Lett. 2012; 14: 1974
  • 7 Kosugi Y, Imaoka Y, Gotoh F, Rahim MA, Matsui Y, Sakanishi K. Org. Biomol. Chem. 2003; 1: 817
  • 8 Komiyama M, Hirai H. J. Am. Chem. Soc. 1984; 106: 174
  • 9 Lack A, Fuchs G. J. Bacteriol. 1992; 174: 3629
  • 10 Boll M, Fuchs G. Biol. Chem. 2005; 386: 989
  • 11 Lack A, Tommasi I, Aresta M, Fuchs G. Eur. J. Biochem. 1991; 197: 473
  • 12 Lack A, Fuchs G. Arch. Microbiol. 1994; 161: 132
  • 13 Schühle K, Fuchs G. J. Bacteriol. 2004; 186: 4556
  • 14 Matsui T, Yoshida T, Hayashi T, Nagasawa T. Arch. Microbiol. 2006; 186: 21
  • 15 Hsu TD, Daniel SL, Lux MF, Drake HL. J. Bacteriol. 1990; 172: 212
  • 16 Ienaga S, Kosaka S, Honda Y, Ishii Y, Kirimura K. Bull. Chem. Soc. Jpn. 2013; 86: 628
  • 17 Yoshida T, Hayakawa Y, Matsui T, Nagasawa T. Arch. Microbiol. 2004; 181: 391
  • 18 Iwasaki Y, Kino K, Nishide H, Kirimura K. Biotechnol. Lett. 2007; 29: 819
  • 19 Gorny N, Schink B. Appl. Environ. Microbiol. 1994; 60: 3396
  • 20 Ding B, Schmeling S, Fuchs G. J. Bacteriol. 2008; 190: 1620
  • 21 Wuensch C, Gross J, Steinkellner G, Lyskowski A, Gruber K, Glueck SM, Faber K. RSC Adv. 2014; 4: 9673
  • 22 Ishii Y, Narimatsu Y, Iwasaki Y, Arai N, Kino K, Kirimura K. Biochem. Biophys. Res. Commun. 2004; 324: 611
  • 23 Anastas PT, Kirchhoff MM. Acc. Chem. Res. 2002; 35: 686
  • 24 Matsuda T. J. Biosci. Bioeng. 2013; 115: 233
  • 25 Rodríguez H, Angulo I, de las Rivas B, Campillo N, Páez JA, Muñoz R, Mancheño JM. Proteins: Struct., Funct., Bioinf. 2010; 78: 1662
  • 26 Williams CM, Johnson JB, Rovis T. J. Am. Chem. Soc. 2008; 130: 14936
  • 27 Matsuda T, Ohashi Y, Harada T, Yanagihara R, Nagasawa T, Nakamura K. Chem. Commun. (Cambridge) 2001; 2194
  • 28 Sugimura K, Kuwabata S, Yoneyama H. J. Am. Chem. Soc. 1989; 111: 2361
  • 29 Sugimura K, Kuwabata S, Yoneyama H. Bioelectrochem. Bioenerg. 1990; 24: 241
  • 30 Wieser M, Yoshida T, Nagasawa T. J. Mol. Catal. B: Enzym. 2001; 11: 179
  • 31 Yoshida T, Nagasawa T. J. Biosci. Bioeng. 2000; 89: 111
  • 32 Omura H, Wieser M, Nagasawa T. Eur. J. Biochem. 1998; 253: 480
  • 33 Wieser M, Fujii N, Yoshida T, Nagasawa T. Eur. J. Biochem. 1998; 257: 495
  • 34 Yoshida T, Fujita K, Nagasawa T. Biosci., Biotechnol., Biochem. 2002; 66: 2388
  • 35 Yoo W.-J, Capdevila MG, Du X, Kobayashi S. Org. Lett. 2012; 14: 5326
  • 36 Aresta M, Dibenedetto A, Gianfrate L, Pastore C. J. Mol. Catal. A: Chem. 2003; 204: 245
  • 37 Kawanami H, Ikushima Y. Chem. Commun. (Cambridge) 2000; 2089
  • 38 Allen JR, Ensign SA. J. Bacteriol. 1996; 178: 1469
  • 39 Pandey AS, Mulder DW, Ensign SA, Peters JW. FEBS Lett. 2011; 585: 459
  • 40 Krishnakumar AM, Sliwa D, Endrizzi JA, Boyd ES, Ensign SA, Peters JW. Microbiol. Mol. Biol. Rev. 2008; 72: 445
  • 41 Hügler M, Krieger RS, Jahn M, Fuchs G. Eur. J. Biochem. 2003; 270: 736
  • 42 Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 10631
  • 43 Alber BE, Spanheimer R, Ebenau-Jehle C, Fuchs G. Mol. Microbiol. 2006; 61: 297
  • 44 Erb TJ, Brecht V, Fuchs G, Müller M, Alber BE. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 8871
  • 45 Wilson MC, Moore BS. Nat. Prod. Rep. 2012; 29: 72
  • 46 Eustáquio AS, McGlinchey RP, Liu Y, Hazzard C, Beer LL, Florova G, Alhamadsheh MM, Lechner A, Kale AJ, Kobayashi Y, Reynolds KA, Moore BS. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 12295
  • 47 Eustáquio AS, Pojer F, Noel JP, Moore BS. Nat. Chem. Biol. 2008; 4: 69
  • 48 Hurley JH, Dean AM, Koshland Jr DE, Stroud RM. Biochemistry 1991; 30: 8671
  • 49 Patel MS, Roche TE. FASEB J. 1990; 4: 3224
  • 50 Wu G. Amino Acids 2009; 37: 1
  • 51 Huang WJ, Jia J, Edwards P, Dehesh K, Schneider G, Lindqvist Y. EMBO J. 1998; 17: 1183
  • 52 Andrews FH, McLeish MJ. Bioorg. Chem. 2012; 43: 26
  • 53 Pohl M, Sprenger GA, Müller M. Curr. Opin. Biotechnol. 2004; 15: 335
  • 54 Kluger R, Chin J, Smyth T. J. Am. Chem. Soc. 1981; 103: 884
  • 55 Jordan F. Nat. Prod. Rep. 2003; 20: 184
  • 56 Polovnikova ES, McLeish MJ, Sergienko EA, Burgner JT, Anderson NL, Bera AK, Jordan F, Kenyon GL, Hasson MS. Biochemistry 2003; 42: 1820
  • 57 Neuberg C, Hirsch J. Biochem. Z. 1921; 115: 282
  • 58 Crout DHG, Davies S, Heath RJ, Miles CO, Rathbone DR, Swoboda BEP, Gravestock MB. Biocatal. Biotransform. 1994; 9: 1
  • 59 Sahm H. Biocatal. Biotransform. 1988; 1: 321
  • 60 Crout DHG, Dalton H, Hutchinson DW, Miyagoshi M. J. Chem. Soc., Perkin Trans. 1 1991; 1329
  • 61 Křen V, Crout DHG, Dalton H, Hutchinson DW, König W, Turner MM, Dean G, Thomson N. J. Chem. Soc., Chem. Commun. 1993; 341
  • 62 Schloss JV, Ciskanik LM, Van Dyk DE. Nature (London) 1988; 331: 360
  • 63 Iding H, Dünnwald T, Greiner L, Liese A, Müller M, Siegert P, Grötzinger J, Demir AS, Pohl M. Chem.–Eur. J. 2000; 6: 1483
  • 64 Dünnwald T, Müller M. J. Org. Chem. 2000; 65: 8608
  • 65 Dünnwald T, Demir AS, Siegert P, Pohl M, Müller M. Eur. J. Org. Chem. 2000; 2161
  • 66 Gocke D, Nguyen CL, Pohl M, Stillger T, Walter L, Müller M. Adv. Synth. Catal. 2007; 349: 1425
  • 67 Domínguez de María P, Pohl M, Gocke D, Gröger H, Trauthwein H, Stillger T, Walter L, Müller M. Eur. J. Org. Chem. 2007; 2940
  • 68 Blanchet J, Baudoux J, Amere M, Lasne M.-C, Rouden J. Eur. J. Org. Chem. 2008; 5493
  • 69 Olmstead WN, Bordwell FG. J. Org. Chem. 1980; 45: 3299
  • 70 Zhang XM, Bordwell FG, Van Der Puy M, Fried HE. J. Org. Chem. 1993; 58: 3060
  • 71 Sjöholm Å, Hemmerling M, Pradeille N, Somfai P. J. Chem. Soc., Perkin Trans. 1 2001; 891
  • 72 Bertogg A, Hintermann L, Huber DP, Perseghini M, Sanna M, Togni A. Helv. Chim. Acta 2012; 95: 353
  • 73 Long M, Thornthwaite DW, Rogers SH, Bonzi G, Livens FR, Rannard SP. Chem. Commun. (Cambridge) 2009; 6406
  • 74 Schmidt VA, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 11402
  • 75 Okrasa K, Levy C, Hauer B, Baudendistel N, Leys D, Micklefield J. Chem.–Eur. J. 2008; 14: 6609
  • 76 Okrasa K, Levy C, Wilding M, Goodall M, Baudendistel N, Hauer B, Leys D, Micklefield J. Angew. Chem. Int. Ed. 2009; 48: 7691
  • 77 Miyamoto K, Ohta H. J. Am. Chem. Soc. 1990; 112: 4077
  • 78 Miyamoto K, Tsuchiya S, Ohta H. J. Am. Chem. Soc. 1992; 114: 6256
  • 79 Miyamoto K, Ohta H. Eur. J. Biochem. 1992; 210: 475
  • 80 Miyamoto K, Tsuchiya S, Ohta H. J. Fluorine Chem. 1992; 59: 225
  • 81 Tamura K, Terao Y, Miyamoto K, Ohta H. Biocatal. Biotransform. 2008; 26: 253
  • 82 Terao Y, Miyamoto K, Ohta H. Chem. Commun. (Cambridge) 2006; 3600
  • 83 Miyamoto K, Ohta H, Osamura Y. Bioorg. Med. Chem. 1994; 2: 469
  • 84 Goodall M, Lewin R, Thompson ML, Leigh J, Breuer M, Baldenius K, Micklefield J unpublished results
  • 85 Miyamoto K, Ohta H. Appl. Microbiol. Biotechnol. 1992; 38: 234
  • 86 Terao Y, Miyamoto K, Ohta H. Chem. Lett. 2007; 36: 420
  • 87 Dolin MI, Gunsalus IC. J. Bacteriol. 1951; 62: 199
  • 88 Løken JP, Størmer FC. Eur. J. Biochem. 1970; 14: 133
  • 89 Marlow VA, Rea D, Najmudin S, Wills M, Fülöp V. ACS Chem. Biol. 2013; 8: 2339
  • 90 Ohshiro T, Aisaka K, Uwajima T. Agric. Biol. Chem. 1989; 53: 1913
  • 91 Crout DHG, Rathbone DL. J. Chem. Soc., Chem. Commun. 1988; 98
  • 92 Blomqvist K, Suihko M.-L, Knowles J, Penttilä M. Appl. Environ. Microbiol. 1991; 57: 2796
  • 93 Dulieu C, Poncelet D. Enzyme Microb. Technol. 1999; 25: 537
  • 94 Crout DHG, Littlechild J, Mitchell MB, Morrey SM. J. Chem. Soc., Perkin Trans. 1 1984; 2271
  • 95 Crout DHG, McIntyre CR, Alcock NW. J. Chem. Soc., Perkin Trans. 2 1991; 53
  • 96 Miyamoto K, Hirokawa S, Ohta H. J. Mol. Catal. B: Enzym. 2007; 46: 14