Faber, K. et al.: 2015 Science of Synthesis: Biocatalysis Organic Synthesis 2 DOI: 10.1055/sos-SD-215-00069
Biocatalysis in Organic Synthesis 2

2.1.4 Enzymatic Carboxylation and Decarboxylation

More Information

Book

Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.

Authors: Au, S. K.; Bartsch, S.; Beecher, D.; Boffi, A.; Bommarius, A. S.; Bonamore, A.; Brown, G.; Busto, E.; Clapés, P.; Faber, K.; Fischereder, E.-M.; France, S. P.; Fuchs, C. S.; Geertsema, E. M.; Glieder, A.; Gruber-Khadjawi, M.; Hall, M.; Hanefeld, U.; Hussain, S.; Ilari, A.; Janssen, D. B.; Kaluđerović, G. N.; Kroutil, W.; Lamm, A. S.; Leipold, F.; Lewin, R.; Li, A. T.; Li, Z.; Majerić Elenkov, M.; Micklefield, J.; Moody, T. S.; Mix, S.; Müller, M.; Poelarends, G. J.; Pohl, M.; Pressnitz, D.; Resch, V.; Richter, N.; Rosazza, J. P. N.; Schreckenbach, H. F.; Simon, R. C.; Steiner, K.; Szymański, W.; Thompson, M. L.; Turner, N. J.; Venkitasubramanian, P.; Vogel, A.; Wechsler, C.; Wessjohann, L. A.; Wohlgemuth, R.

Title: Biocatalysis Organic Synthesis 2

Print ISBN: 9783131741615; Online ISBN: 9783131975317; Book DOI: 10.1055/b-003-125813

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

Carboxylation reactions utilizing whole cells or purified carboxylase/decarboxylase enzymes enable the regioselective formation of new C—C bonds under more benign conditions than are typically used in nonenzymatic transformations such as the Kolbe–Schmitt reaction. A wide variety of substrates have been used in enzymatic carboxylation reactions including phenols, styrenes, pyrroles, and indoles.

Enzymatic decarboxylation can be used to transform simple achiral carboxylic acid substrates into more valuable homochiral building blocks through stereoselective C—H or C—C bond formation. For example, arylmalonate decarboxylases catalyze the enantioselective decarboxylative protonation of α-aryl- and α-alkenylmalonic acids under mild conditions and with excellent enantioselectivity. In addition, thiamine diphosphate dependent decarboxylases catalyze C—C bond formation with a broad range of α-keto acid and aldehyde substrates to produce homochiral α-hydroxy ketones.

 
  • 21 Wuensch C, Gross J, Steinkellner G, Lyskowski A, Gruber K, Glueck SM, Faber K. RSC Adv. 2014; 4: 9673
  • 25 Rodríguez H, Angulo I, de las Rivas B, Campillo N, Páez JA, Muñoz R, Mancheño JM. Proteins: Struct., Funct., Bioinf. 2010; 78: 1662
  • 27 Matsuda T, Ohashi Y, Harada T, Yanagihara R, Nagasawa T, Nakamura K. Chem. Commun. (Cambridge) 2001; 2194
  • 37 Kawanami H, Ikushima Y. Chem. Commun. (Cambridge) 2000; 2089
  • 46 Eustáquio AS, McGlinchey RP, Liu Y, Hazzard C, Beer LL, Florova G, Alhamadsheh MM, Lechner A, Kale AJ, Kobayashi Y, Reynolds KA, Moore BS. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 12295
  • 56 Polovnikova ES, McLeish MJ, Sergienko EA, Burgner JT, Anderson NL, Bera AK, Jordan F, Kenyon GL, Hasson MS. Biochemistry 2003; 42: 1820
  • 58 Crout DHG, Davies S, Heath RJ, Miles CO, Rathbone DR, Swoboda BEP, Gravestock MB. Biocatal. Biotransform. 1994; 9: 1
  • 60 Crout DHG, Dalton H, Hutchinson DW, Miyagoshi M. J. Chem. Soc., Perkin Trans. 1 1991; 1329
  • 61 Křen V, Crout DHG, Dalton H, Hutchinson DW, König W, Turner MM, Dean G, Thomson N. J. Chem. Soc., Chem. Commun. 1993; 341
  • 63 Iding H, Dünnwald T, Greiner L, Liese A, Müller M, Siegert P, Grötzinger J, Demir AS, Pohl M. Chem.–Eur. J. 2000; 6: 1483
  • 65 Dünnwald T, Demir AS, Siegert P, Pohl M, Müller M. Eur. J. Org. Chem. 2000; 2161
  • 66 Gocke D, Nguyen CL, Pohl M, Stillger T, Walter L, Müller M. Adv. Synth. Catal. 2007; 349: 1425
  • 67 Domínguez de María P, Pohl M, Gocke D, Gröger H, Trauthwein H, Stillger T, Walter L, Müller M. Eur. J. Org. Chem. 2007; 2940
  • 68 Blanchet J, Baudoux J, Amere M, Lasne M.-C, Rouden J. Eur. J. Org. Chem. 2008; 5493
  • 71 Sjöholm Å, Hemmerling M, Pradeille N, Somfai P. J. Chem. Soc., Perkin Trans. 1 2001; 891
  • 72 Bertogg A, Hintermann L, Huber DP, Perseghini M, Sanna M, Togni A. Helv. Chim. Acta 2012; 95: 353
  • 73 Long M, Thornthwaite DW, Rogers SH, Bonzi G, Livens FR, Rannard SP. Chem. Commun. (Cambridge) 2009; 6406
  • 76 Okrasa K, Levy C, Wilding M, Goodall M, Baudendistel N, Hauer B, Leys D, Micklefield J. Angew. Chem. Int. Ed. 2009; 48: 7691
  • 82 Terao Y, Miyamoto K, Ohta H. Chem. Commun. (Cambridge) 2006; 3600
  • 84 Goodall M, Lewin R, Thompson ML, Leigh J, Breuer M, Baldenius K, Micklefield J unpublished results
  • 91 Crout DHG, Rathbone DL. J. Chem. Soc., Chem. Commun. 1988; 98
  • 94 Crout DHG, Littlechild J, Mitchell MB, Morrey SM. J. Chem. Soc., Perkin Trans. 1 1984; 2271
  • 95 Crout DHG, McIntyre CR, Alcock NW. J. Chem. Soc., Perkin Trans. 2 1991; 53