Faber, K. et al.: 2015 Science of Synthesis, 1: Biocatalysis in Organic Synthesis 1 DOI: 10.1055/sos-SD-214-00194
Biocatalysis in Organic Synthesis 1

1.4.2 Hydrolysis of Nitriles to Carboxylic Acids

More Information

Book

Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.

Authors: Asano, Y.; Babich, L.; Bertau, M.; Cobucci-Ponzano, B.; Díaz-Rodríguez, A.; Engel, U.; Faber, K.; Flitsch, S. L.; Glueck, S. M.; Gotor-Fernández, V.; Green, A. P.; Hall, M.; Hartog, A. F.; Hepworth, L. J.; Hollmann, F.; Jeromin, G. E.; Lauchli, R.; Lavandera, I.; Liese, A.; Martínková, L.; Moracci, M.; Pesci, L.; Rodríguez-Mata, M.; Rozzell, D.; Rudat, J.; Schmidberger, J. W.; Servi, S.; Slomka, C.; Syldatk, C.; Tasnádi, G.; Tessaro, D.; Veselá, A. B.; Voglmeir, J.; Wever, R.

Title: Biocatalysis in Organic Synthesis 1

Print ISBN: 9783131741318; Online ISBN: 9783131975218; Book DOI: 10.1055/b-003-125815

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

The synthesis of carboxylic acids from nitriles utilizes two pathways of nitrile biotransformations: direct hydrolysis by nitrilase and bienzymatic hydrolysis by nitrile hydratase and amidase. General procedures consist of using whole cells or isolated enzymes as catalysts in aqueous media with a small fraction of organic cosolvent. These methods afford a number of products that are often difficult to prepare by chemical means such as 3-oxoamides, cyano carboxamides and cyano carboxylic acids, enantiopure 2- and 3-substituted carboxylic acids and carboxamides, and enantiopure (hetero)cyclic carboxylic acids and carboxamides. Stereochemistry is mainly recognized by amidase, but in some cases also by nitrilase and nitrile hydratase. Nitrile hydrolysis has also been employed in chemoenzymatic and multienzymatic methods such as the synthesis of aromatic and heterocyclic amides from aldehydes, the synthesis of enantiopure 2-hydroxy acids from aldehydes, the synthesis of enantiopure 3-hydroxy acids from 3-oxonitriles, and the synthesis of cyclophellitols from benzo-1,4-quinone.

 
  • 1 Fernandes BCM, Mateo C, Kiziak C, Chmura A, Wacker J, van Rantwijk F, Stolz A, Sheldon RA. Adv. Synth. Catal. 2006; 348: 2597
  • 2 Mylerová M, Martínková L. Curr. Org. Chem. 2003; 7: 1279
  • 3 Martínková L, Křen V. Biocatal. Biotransform. 2002; 20: 73
  • 4 Sugai T, Yamazaki T, Yokoyama M, Ohta H. Biosci., Biotechnol., Biochem. 1997; 61: 1419
  • 5 Wang M.-X. Top. Catal. 2005; 35: 117
  • 6 Thuku RN, Brady D, Benedik MJ, Sewell BT. J. Appl. Microbiol. 2009; 106: 703
  • 7 Velankar H, Clarke KG, du Preez R, Cowan DA, Burton SG. Trends Biotechnol. 2010; 28: 561
  • 8 Martínková L, Křen V. Curr. Opin. Chem. Biol. 2010; 14: 130
  • 9 Asano Y. J. Biotechnol. 2002; 94: 65
  • 10 Martínková L, Vejvoda V, Křen V. J. Biotechnol. 2008; 133: 318
  • 11 Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell B, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz PL, Burk MJ, Short JM. Appl. Environ. Microbiol. 2004; 70: 2429
  • 12 Mueller P, Egorova K, Vorgias CE, Boutou E, Trauthwein H, Verseck S, Antranikian G. Protein Expression Purif. 2006; 47: 672
  • 13 Zhu D, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L. J. Biotechnol. 2008; 133: 327
  • 14 Seffernick JL, Samanta SK, Louie TM, Wackett LP, Subramanian M. J. Biotechnol. 2009; 143: 17
  • 15 Kaplan O, Veselá AB, Petříčková A, Pasquarelli F, Pičmanová M, Rinágelová A, Bhalla TC, Pátek M, Martínková L. Mol. Biotechnol. 2013; 54: 996
  • 16 Kobayashi M, Shimizu S. FEMS Microbiol. Lett. 1994; 120: 217
  • 17 Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V. Environ. Int. 2009; 35: 162
  • 18 www.prozomix.com (accessed April 30, 2014).
  • 19 http://www.codexis.com/documents/Codexis%20Codex%20NIT%20Screening%20Kit%20Protocol%20-%20UPDATED.pdf (accessed May 7, 2014).
  • 20 Kashiwagi M, Fuhshuku K.-I, Sugai T. J. Mol. Catal. B: Enzym. 2004; 29: 249
  • 21 Gotor V, Liz R, Testera AM. Tetrahedron 2004; 60: 607
  • 22 Vejvoda V, Šveda O, Kaplan O, Přikrylová V, Elišáková V, Himl M, Kubáč D, Pelantová H, Kuzma M, Křen V, Martínková L. Biotechnol. Lett. 2007; 29: 1119
  • 23 Rey P, Rossi J.-C, Taillades J, Gros G, Nore O. J. Agric. Food Chem. 2004; 52: 8155
  • 24 Zhu D, Mukherjee C, Biehl ER, Hua L. Adv. Synth. Catal. 2007; 349: 1667
  • 25 Mukherjee C, Zhu D, Biehl ER, Hua L. Eur. J. Org. Chem. 2006; 5238
  • 26 Effenberger F, Oßwald S. Synthesis 2001; 1866
  • 27 Zhang Z.-J, Xu J.-H, He Y.-C, Ouyang L.-M, Liu Y.-Y, Imanaka T. Process Biochem. (Oxford, U. K.) 2010; 45: 887
  • 28 Zhang Z.-J, Pan J, Liu J.-F, Xu J.-H, He Y.-C, Liu Y.-Y. J. Biotechnol. 2011; 152: 24
  • 29 Zhang C.-S, Zhang Z.-J, Li C.-X, Yu H.-L, Zheng G.-W, Xu J.-H. Appl. Microbiol. Biotechnol. 2012; 95: 91
  • 30 Sosedov O, Matzer K, Bürger S, Kiziak C, Baum S, Altenbuchner J, Chmura A, van Rantwijk F, Stolz A. Adv. Synth. Catal. 2009; 351: 1531
  • 31 Wu Z.-L, Li Z.-Y. Tetrahedron: Asymmetry 2001; 12: 3305
  • 32 Wang M.-X, Li J.-J, Ji G.-J, Li J.-S. J. Mol. Catal. B: Enzym. 2001; 14: 77
  • 33 Wang M.-X, Zhao S.-M. Tetrahedron Lett. 2002; 43: 6617
  • 34 Wang M.-X, Zhao S.-M. Tetrahedron: Asymmetry 2002; 13: 1695
  • 35 Wang M.-X, Lin S.-J. Tetrahedron Lett. 2001; 42: 6925
  • 36 Wang M.-X, Lin S.-J. J. Org. Chem. 2002; 67: 6542
  • 37 Wu Z.-L, Li Z.-Y. Tetrahedron: Asymmetry 2003; 14: 2133
  • 38 Mateo C, Chmura A, Rustler S, van Rantwijk F, Stolz A, Sheldon RA. Tetrahedron: Asymmetry 2006; 17: 320
  • 39 Rustler S, Motejadded H, Altenbuchner J, Stolz A. Appl. Microbiol. Biotechnol. 2008; 80: 87
  • 40 Chmura A, Rustler S, Paravidino M, van Rantwijk F, Stolz A, Sheldon RA. Tetrahedron: Asymmetry 2013; 24: 1225
  • 41 Osprian I, Fechter MH, Griengl H. J. Mol. Catal. B: Enzym. 2003; 24–25: 89
  • 42 Mukherjee C, Zhu D, Biehl ER, Parmar RR, Hua L. Tetrahedron 2006; 62: 6150
  • 43 Kinfe HH, Chhiba V, Frederick J, Bode ML, Mathiba K, Steenkamp PA, Brady D. J. Mol. Catal. B: Enzym. 2009; 59: 231
  • 44 Wu Z.-L, Li Z.-Y. J. Mol. Catal. B: Enzym. 2003; 22: 105
  • 45 Ankati H, Zhu D, Yang Y, Biehl ER, Hua L. J. Org. Chem. 2009; 74: 1658
  • 46 DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk MJ. J. Am. Chem. Soc. 2003; 125: 11476
  • 47 Wang M.-X, Liu C.-S, Li J.-S, Meth-Cohn O. Tetrahedron Lett. 2000; 41: 8549
  • 48 Wang M.-X, Wu Y. Org. Biomol. Chem. 2003; 1: 535
  • 49 Effenberger F, Oßwald S. Tetrahedron: Asymmetry 2001; 12: 2581
  • 50 Hann EC, Sigmund AE, Fager SK, Cooling FB, Gavagan JE, Bramucci MG, Chauhan S, Payne MS, DiCosimo R. Tetrahedron 2004; 60: 577
  • 51 Wang M.-X, Feng G.-Q, Zheng Q.-Y. Tetrahedron: Asymmetry 2004; 15: 347
  • 52 Wang M.-X, Feng G.-Q. New J. Chem. 2002; 26: 1575
  • 53 Wang M.-X, Lin S.-J, Liu C.-S, Zheng Q.-Y, Li J.-S. J. Org. Chem. 2003; 68: 4570
  • 54 Wang J.-Y, Wang D.-X, Pan J, Huang Z.-T, Wang M.-X. J. Org. Chem. 2007; 72: 9391
  • 55 Leng D.-H, Wang D.-X, Pan J, Huang Z.-T, Wang M.-X. J. Org. Chem. 2009; 74: 6077
  • 56 Leng D.-H, Wang D.-X, Huang Z.-T, Wang M.-X. Org. Biomol. Chem. 2010; 8: 4736
  • 57 Winkler M, Martínková L, Knall AC, Krahulec S, Klempier N. Tetrahedron 2005; 61: 4249
  • 58 Winkler M, Knall AC, Kulterer MR, Klempier N. J. Org. Chem. 2007; 72: 7423
  • 59 Winkler M, Meischler D, Klempier N. Adv. Synth. Catal. 2007; 349: 1475
  • 60 Benz P, Muntwyler R, Wohlgemuth R. J. Chem. Technol. Biotechnol. 2007; 82: 1087
  • 61 DʼAntona N, Morrone R, Bovicelli P, Gambera G, Kubáč D, Martínková L. Tetrahedron: Asymmetry 2010; 21: 2448
  • 62 DʼAntona N, Nicolosi G, Morrone R, Kubáč D, Kaplan O, Martínková L. Tetrahedron: Asymmetry 2010; 21: 695