van Leeuwen, P. W. N. M.: 2014 Science of Synthesis, 2013/8: C-1 Building Blocks in Organic Synthesis 2 DOI: 10.1055/sos-SD-213-00191
C-1 Building Blocks in Organic Synthesis 2

2.5.7 Formylation and the Vilsmeier Reagent

More Information

Book

Editor: van Leeuwen, P. W. N. M.

Authors: Ballini, R.; Belderrain, T. R.; Bruneau, C.; Cokoja, M.; Dong, D.; Fischmeister, C.; Grushin, V. V.; Hu, J.; Ibrahim, H.; Iwasawa, N.; Kaposi, M.; Kühn, F. E.; Lishchynskyi, A.; Merino, P.; Molander, G. A.; Müller, C.; MuÇoz-Molina, J. M.; Neumann, H.; Ni, C.; Nicasio, M. C.; Novák, P.; Nozaki, K.; Ouali, A.; Petrini, M.; Rutjes, F. P. J. T.; Ryu, D.; Schoonen, L.; Schranck, J.; Taillefer, M.; Takahashi, K.; Takaya, J.; te Grotenhuis, C.; Witt, J.; Zhang, N.

Title: C-1 Building Blocks in Organic Synthesis 2

Subtitle: Alkenations, Cross Couplings, Insertions, Substitutions, and Halomethylations

Print ISBN: 9783131751218; Online ISBN: 9783132064515; Book DOI: 10.1055/b-003-125817

Subjects: C-1 Building Blocks in Organic Synthesis

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

Formylation, allowing the introduction of a formyl group to an organic molecule, is a useful reaction in organic synthesis. The obtained formyl group can be readily reduced to afford alcohols or oxidized to give acids. Moreover, formylation plays a key role in biological and pharmaceutical fields. This chapter covers formylating reagents that are capable of efficiently introducing a formyl group to various organic molecules. Due to the versatility, ease of operation, and tolerance of many functional groups, the Vilsmeier reaction for the formylation of organic compounds is the main focus of this chapter.

 
  • 1 Olah GA, Ohannesian L, Arvanaghi M. Chem. Rev. 1987; 87: 671
  • 2 Marson CM. Tetrahedron 1992; 48: 3659
  • 3 Su W, Weng Y, Jiang L, Yang Y, Zhao L, Chen Z, Li Z, Li J. Org. Prep. Proced. Int. 2010; 42: 503
  • 4 Aldred R, Johnston R, Levin D, Neilan J. J. Chem. Soc., Perkin Trans. 1 1994; 1823
  • 5 Duff JC, Bills EJ. J. Chem. Soc. 1932; 1987
  • 6 Smith WE. J. Org. Chem. 1972; 37: 3972
  • 7 Gattermann L, Koch JA. Ber. Dtsch. Chem. Ges. 1897; 30: 1622
  • 8 Crounse NN. Org. React. (N. Y.) 1949; 5: 290
  • 9 Schütz F. DRP 403 489, 1924
  • 10 Gattermann L. Justus Liebigs Ann. Chem. 1906; 347: 347
  • 11 Wu W, Su W. J. Am. Chem. Soc. 2011; 133: 11924
  • 12 Vilsmeier A, Haack A. Ber. Dtsch. Chem. Ges. B 1927; 60: 119
  • 13 Arnold Z, Žemlička J. Collect. Czech. Chem. Commun. 1959; 24: 2385
  • 14 Reichardt C. J. Prakt. Chem. 1999; 341: 609
  • 15 García Martínez A, Martínez Alvarez R, Osío Barcina J, de la Moya Cerero S, Teso Vilar E, García Fraile A, Hanack M, Subramanian LR. J. Chem. Soc., Chem. Commun. 1990; 1571
  • 16 Campaigne E, Archer WL. J. Am. Chem. Soc. 1953; 75: 989
  • 17 Sommers AH, Michaels Jr RJ, Weston AW. J. Am. Chem. Soc. 1952; 74: 5546
  • 18 Brenna E, Dei Negri C, Fuganti C, Gatti FG, Serra S. Tetrahedron: Asymmetry 2004; 15: 335
  • 19 Lash TD, El-Beck JA, Ferrence GM. J. Org. Chem. 2007; 72: 8402
  • 20 Lai G, Bu XR, Santos J, Mintz EA. Synlett 1997; 1275
  • 21 Raposo MMM, Sousa AMRC, Fonseca AMC, Kirsch G. Tetrahedron 2006; 62: 3493
  • 22 Nagarajan R, Perumal PT. Synth. Commun. 2004; 34: 2127
  • 23 Kanato H, Takimiya K, Otsubo T, Aso Y, Nakamura T, Araki Y, Ito O. J. Org. Chem. 2004; 69: 7183
  • 24 Grimwade MJ, Lester MG. Tetrahedron 1969; 25: 4535
  • 25 Dauphin G. Synthesis 1979; 799
  • 26 Schmidle CJ, Barnett PG. J. Am. Chem. Soc. 1956; 78: 3209
  • 27 Liu J, Wang M, Li B, Liu Q, Zhao Y. J. Org. Chem. 2007; 72: 4401
  • 28 Raju B, Rao GSK. Synthesis 1987; 197
  • 29 Majo VJ, Perumal PT. J. Org. Chem. 1996; 61: 6523
  • 30 Pan W, Dong D, Wang K, Zhang J, Wu R, Xiang D, Liu Q. Org. Lett. 2007; 9: 2421
  • 31 Zhang R, Zhang D, Guo Y, Zhou G, Jiang Z, Dong D. J. Org. Chem. 2008; 73: 9504
  • 32 Zhang R, Zhang D, Liang Y, Zhou G, Dong D. J. Org. Chem. 2011; 76: 2880