Müller, T. J. J.: 2014 Science of Synthesis, 2013/6: Multicomponent Reactions, Volume 2 DOI: 10.1055/sos-SD-211-00178
Multicomponent Reactions, Volume 2

2.6 Metal-Mediated Multicomponent Reactions

More Information

Book

Editor: Müller, T. J. J.

Authors: Alavijeh, N. S.; Arndtsen, B. A.; Balalaie, S.; Bonne, D.; Chen, C.; Coquerel, Y.; Elliott, M.; Festa, A.; Fusano, A.; Ghabraie, E.; Jones, D. H.; Modha, S.; Müller, T. J. J.; Purushothaman, S.; Raghunathan, R.; Rodriguez, J.-A.; Ryu, I.; Sarvary, A.; Shaabani, A.; Shaabani, S.; Szabó, K. J.; Takasu, K.; Tjutrins, J.; Van der Eycken, E.; Voskressensky, L.; Wan, J.; Xi, C.

Title: Multicomponent Reactions, Volume 2

Subtitle: Reactions Involving an α,α-Unsaturated Carbonyl Compound as Electrophilic Component, Cycloadditions, and Boron-, Silicon-, Free-Radical-, and Metal-Mediated Reactions

Print ISBN: 9783131728319; Online ISBN: 9783132064317; Book DOI: 10.1055/b-003-125831

Subjects: Multicomponent Reactions

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

Multicomponent reactions (MCRs) make possible the rapid synthesis of molecular libraries that have a high degree of structural diversity. Metal-mediated multicomponent reactions are particularly interesting as they give access to processes that occur with high chemo-, regio-, and stereoselectivity with excellent functional group tolerance. For example, reductive coupling of two unsaturated compounds on reduced zirconocene affords a variety of zirconacycles, which react with electrophiles to form various carbo- and heterocycles.

 
  • 1 Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
  • 2 Armstrong RM, Combs AP, Tempest PA, Brown SD, Keating T. Acc. Chem. Res. 1996; 29: 123
  • 3 Bienaymé H, Hulme C, Oddon G, Schmitt P. Chem.–Eur. J. 2000; 6: 3321
  • 4 Hulme C, Gore V. Curr. Med. Chem. 2003; 10: 51
  • 5 DʼSouza DM, Müller TJJ. Chem. Soc. Rev. 2007; 36: 1095
  • 7 Forgione P, Fallis AG. Tetrahedron Lett. 2000; 41: 11
  • 8 Forgione P, Wilson PD, Fallis AG. Tetrahedron Lett. 2000; 41: 17
  • 9 Du Z, Li Y, Wang F, Zhou W, Wang J.-X. Tetrahedron Lett. 2010; 51: 1745
  • 10 Vilaivan T, Winotapan C, Banphavichit V, Shina T, Ohfune Y. J. Org. Chem. 2005; 70: 3464
  • 11 Arena G, Zill N, Salvadori J, Girard N, Mann A, Taddei M. Org. Lett. 2011; 13: 2294
  • 12 Jang T.-S, Ku IW, Jang MS, Keum G, Kang SB, Chung BY, Kim Y. Org. Lett. 2006; 8: 195
  • 13 Shanthi G, Perumal PT. Synlett 2008; 2791
  • 14 Ogata A, Nemoto M, Konayashi K, Tsubouchi A, Takeda T. Chem.–Eur. J. 2007; 13: 1320
  • 15 Suzuki D, Urabe H, Sato F. J. Am. Chem. Soc. 2001; 123: 7925
  • 16 Suzuki D, Tanaka R, Urabe H, Sato F. J. Am. Chem. Soc. 2002; 124: 3518
  • 17 Tanaka R, Yuza A, Watai Y, Suzuki D, Takayama Y, Sato F, Urabe H. J. Am. Chem. Soc. 2005; 127: 7774
  • 18 Chen C, Liu Y, Xi C. Tetrahedron Lett. 2009; 50: 5434
  • 19 Zhao C, Yan J, Xi Z. J. Org. Chem. 2003; 68: 4355
  • 20 Chen C, Xi C, Jiang Y, Hong X. J. Am. Chem. Soc. 2005; 127: 8024
  • 21 Chen C, Xi C, Ai Z, Hong X. Org. Lett. 2006; 8: 4055
  • 22 Chen C, Xi C, Lai C, Wang R, Hong X. Eur. J. Org. Chem. 2004; 647
  • 23 Xi C, Kotora M, Takahashi T. Tetrahedron Lett. 1999; 40: 2375
  • 24 Zhou Y, Wang Y, Xi C. Organometallics 2011; 30: 5077
  • 25 Takahashi T, Tsai F.-Y, Kotora M. J. Am. Chem. Soc. 2000; 122: 4994
  • 26 Takahashi T, Tsai F.-Y, Li Y, Wang H, Kondo Y, Yamanaka M, Nakajima K, Kotora M. J. Am. Chem. Soc. 2002; 124: 5059
  • 27 Barluenga J, Pérez-Sánchez I, Rubio E, Flórez J. Angew. Chem. Int. Ed. 2003; 42: 5860
  • 28 Barluenga J, Pérez-Sánchez I, Suero MG, Rubio E, Flórez J. Chem.–Eur. J. 2006; 12: 7226
  • 29 Jiang D, Herndon JW. Org. Lett. 2000; 2: 1267
  • 30 Duan S, Sinha-Mahapatra DK, Herndon JW. Org. Lett. 2008; 10: 1541
  • 31 Barluenga J, Vicente R, Barrio P, López LA, Tomás M. J. Am. Chem. Soc. 2004; 126: 5974
  • 32 Barluenga J, Vicente R, Barrio P, López LA, Tomás M, Borge J. J. Am. Chem. Soc. 2004; 126: 14 354
  • 33 de Meijere A, Schirmer H, Stein F, Funke F, Duetsch M, Wu Y.-T, Noltemeyer M, Belgardt T, Knieriem B. Chem.–Eur. J. 2005; 11: 4132
  • 34 Barluenga J, Aznar F, Barluenga S, Martín A, García-Granda S, Martín E. Synlett 1998; 473
  • 35 Barluenga J, Aznar F, Palomero M. Chem.–Eur. J. 2001; 7: 5318
  • 36 Rigby JH, Warshakoon NC, Heeg MJ. J. Am. Chem. Soc. 1996; 118: 6094
  • 37 Palomo C, Aizpurua JM, Gracenea JJ, García-Granda S, Pertierra P. Eur. J. Org. Chem. 1998; 2201
  • 38 Le Gall E, Troupel M, Nédélec J.-Y. Tetrahedron Lett. 2006; 47: 2497
  • 39 Sengmany S, Le Gall E, Le Jean C, Troupel M, Nédélec J.-Y. Tetrahedron 2007; 63: 3672
  • 40 Le Gall E, Troupel M, Nédélec J.-Y. Tetrahedron 2006; 62: 9953
  • 41 Haurena C, Le Gall E, Sengmany S, Martens T, Troupel M. J. Org. Chem. 2010; 75: 2645
  • 42 Sengmany S, Le Gall E, Troupel M. Synlett 2008; 1031
  • 43 Fan R, Pu D, Qin L, Wen F, Yao G, Wu J. J. Org. Chem. 2007; 72: 3149
  • 44 Le Gall E, Haurena C, Sengmany S, Martens T, Troupel M. J. Org. Chem. 2009; 74: 7970
  • 45 Haurena C, Sengmany S, Huguen P, Le Gall E, Martens T, Troupel M. Tetrahedron Lett. 2008; 49: 7121