Donohoe, T. J. et al.: 2022 Science of Synthesis, 2022/3: Knowledge Updates 2022/3 DOI: 10.1055/sos-SD-148-00042
Knowledge Updates 2022/3

48.2.3 Cyclopropanes (Update 2022)

Weitere Informationen

Buch

Herausgeber: Donohoe, T. J.; Huang, Z. ; Marschner, C. ; Oestreich, M.

Autoren: Jackowski, O. ; Marschner, C. ; Ohmiya, H. ; Perez-Luna, A. ; Pinto, D. C. G. A. ; Rocha, D. H. A. ; dos Santos, C. M. M. ; Silva, V. L. M. ; Sumida, Y. ; Takeda, N. ; Tang, X.; Yoshida, H.

Titel: Knowledge Updates 2022/3

Print ISBN: 9783132452848; Online ISBN: 9783132452862; Buch-DOI: 10.1055/b000000643

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Knowledge Updates



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

Cyclopropanes represent an interesting class of strained rings and serve as versatile building blocks in organic synthesis. Furthermore, cyclopropane moieties are also found in many bioactive compounds and natural products. Reviewed herein are synthetic strategies to access mono- and polysubstituted cyclopropyl cores. In particular, the application of visible-light photoredox catalysis in the synthesis of cyclopropanes is introduced.

 
  • 1 de Meijere A, Kozhushkov SI. Science of Synthesis 2009; 48: 477
  • 2 Tenaglia A, Le Jeune K, Giordano L, Buono G. Org. Lett. 2011; 13: 636
  • 3 Krämer K, Leong P, Lautens M. Org. Lett. 2011; 13: 819
  • 4 Nakano T, Endo K, Ukaji Y. Synlett 2015; 26: 671
  • 5 Müller DS, Marek I. J. Am. Chem. Soc. 2015; 137: 15 414 J. Am. Chem. Soc. 2016; 138: 14 503
  • 6 Müller DS, Marek I. Chem. Soc. Rev. 2016; 45: 4552
  • 7 Didier D, Delaye P.-O, Simaan M, Island B, Eppe G, Eijsberg H, Kleiner A, Knochel P, Marek I. Chem.–Eur. J. 2014; 20: 1038
  • 8 Müller DS, Werner V, Akyol S, Schmalz H.-G, Marek I. Org. Lett. 2017; 19: 3970
  • 9 Dian L, Müller DS, Marek I. Angew. Chem. Int. Ed. 2017; 56: 6783
  • 10 Parra A, Amenós L, Guisán-Ceinos M, López A, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2014; 136: 15 833
  • 11 Huang Q, Larock RC. Tetrahedron Lett. 2009; 50: 7235
  • 12 Li J, Liu L, Zhou Y.-y, Xu S.-n. RSC Adv. 2012; 2: 3207
  • 13 Sanford AB, Thane TA, McGinnis TM, Chen P.-P, Hong X, Jarvo ER. J. Am. Chem. Soc. 2020; 142: 5017
  • 14 Tollefson EJ, Erickson LW, Jarvo ER. J. Am. Chem. Soc. 2015; 137: 9760
  • 15 Kelly CB, Colthart AM, Constant BD, Corning SR, Dubois LNE, Genovese JT, Radziewicz JL, Sletten EM, Whitaker KR, Tilley LJ. Org. Lett. 2011; 13: 1646
  • 16 Mercadante MA, Kelly CB, Hamlin TA, Delle Chiaie KR, Drago MD, Duffy KK, Dumas MT, Fager DC, Glod BLC, Hansen KE, Hill CR, Leising RM, Lynes CL, MacInnis AE, McGohey MR, Murray SA, Piquette MC, Roy SL, Smith RM, Sullivan KR, Truong BH, Vailonis KM, Gorbatyuk V, Leadbeater NE, Tilley LJ. Chem. Sci. 2014; 5: 3983
  • 17 Ye Y, Zheng C, Fan R. Org. Lett. 2009; 11: 3156
  • 18 Liu W, Chen D, Zhu X.-Z, Wan X.-L, Hou X.-L. J. Am. Chem. Soc. 2009; 131: 8734
  • 19 den Hartog T, Rudolph A, Maciá B, Minnaard AJ, Feringa BL. J. Am. Chem. Soc. 2010; 132: 14 349
  • 20 Liao L.-L, Cao G.-M, Ye J.-H, Sun G.-Q, Zhou W.-J, Gui Y.-Y, Yan S.-S, Shen G, Yu D.-G. J. Am. Chem. Soc. 2018; 140: 17 338
  • 21 Milligan JA, Phelan JP, Polites VC, Kelly CB, Molander GA. Org. Lett. 2018; 20: 6840
  • 22 Shu C, Mega RS, Andreassen BJ, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 15 430
  • 23 Taber DF, Guo P. J. Org. Chem. 2008; 73: 9479
  • 24 Taber DF, Wang Y, Pahutski TF. J. Org. Chem. 2000; 65: 3861
  • 25 Wong HNC, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
  • 26 Lee-Ruff E, Mladenova G. Chem. Rev. 2003; 103: 1449
  • 27 Saunders M, Laidig KE, Wiberg KB, Schleyer PvR. J. Am. Chem. Soc. 1988; 110: 7652
  • 28 Holman RW, Plocica J, Blair L, Giblin D, Gross ML. J. Phys. Org. Chem. 2001; 14: 17
  • 29 Takasu K, Nagamoto Y, Takemote Y. Chem.–Eur. J. 2010; 16: 8427
  • 30 Negishi E.-i, Montchamp J.-L, Anastasia L, Elizarov A, Choueiry D. Tetrahedron Lett. 1998; 39: 2503
  • 31 D’yakonov VA, Tuktarova RA, Khalilov LM, Dzhemilev UM. Tetrahedron Lett. 2011; 52: 4602
  • 32 Masuda Y, Hasegawa M, Yamashita M, Nozaki K, Ishida N, Murakami M. J. Am. Chem. Soc. 2013; 135: 7142
  • 33 del Hoyo AM, Herraiz AG, Suero MG. Angew. Chem. Int. Ed. 2017; 56: 1610
  • 34 Phelan JP, Lang SB, Compton JS, Kelly CB, Dykstra R, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2018; 140: 8037
  • 35 Benoit G, Charette AB. J. Am. Chem. Soc. 2017; 139: 1364
  • 36 Murai M, Mizuta C, Taniguchi R, Takai K. Org. Lett. 2017; 19: 6104
  • 37 Sayes M, Benoit G, Charette AB. Angew. Chem. Int. Ed. 2018; 57: 13 514
  • 38 Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
  • 39 Adams LA, Aggarwal VK, Bonnert RV, Bressel B, Cox RJ, Shepherd J, de Vicente J, Walter M, Whittingham WG, Winn CL. J. Org. Chem. 2003; 68: 9433
  • 40 Barluenga J, Quiñones N, Tomás-Gamasa M, Cabal M.-P. Eur. J. Org. Chem. 2012; 2312
  • 41 Lorentz JC, Long J, Yang Z, Xue S, Xie Y, Shi Y. J. Org. Chem. 2004; 69: 327
  • 42 Charette AB, Francoeur S, Martel J, Wilb N. Angew. Chem. Int. Ed. 2000; 39: 4539
  • 43 Charette AB, Beauchemin A, Francoeur S. J. Am. Chem. Soc. 2001; 123: 8139
  • 44 Lacasse M.-C, Poulard C, Charette AB. J. Am. Chem. Soc. 2005; 127: 12 440
  • 45 Voituriez A, Zimmer LE, Charette AB. J. Org. Chem. 2010; 75: 1244
  • 46 Lemière G, Gandon V, Cariou K, Hours A, Fukuyama T, Dhimane A.-L, Fensterbank L, Malacria M. J. Am. Chem. Soc. 2009; 131: 2993
  • 47 Wang S, Zhang L. J. Am. Chem. Soc. 2006; 128: 8414 J. Am. Chem. Soc. 2006; 128: 9979
  • 48 Marion N, Díez-González S, de Frémont P, Noble AR, Nolan SP. Angew. Chem. Int. Ed. 2006; 45: 3647
  • 49 Shapiro ND, Toste FD. J. Am. Chem. Soc. 2007; 129: 4160
  • 50 Toullec PY, Genin E, Leseurre L, Genêt J.-P, Michelet V. Angew. Chem. Int. Ed. 2006; 45: 7427
  • 51 Horino Y, Yamamoto T, Ueda K, Kuroda S, Toste FD. J. Am. Chem. Soc. 2009; 131: 2809
  • 52 López-Carrillo V, Huguet N, Mosquera Á, Echavarren AM. Chem.–Eur. J. 2011; 17: 10 972
  • 53 Ringger DH, Chen P. Angew. Chem. Int. Ed. 2013; 52: 4686
  • 54 Wang W, Hammond GB, Xu B. J. Am. Chem. Soc. 2012; 134: 5697
  • 55 Lauterbach T, Ganschow M, Hussong MW, Rudolph M, Rominger F, Hashmi ASK. Adv. Synth. Catal. 2014; 356: 680
  • 56 Ma J, Jiang H, Zhu S. Org. Lett. 2014; 16: 4472
  • 57 Cao T, Chen K, Zhu S. Org. Chem. Front. 2017; 4: 450
  • 58 Zheng Z, Wang Z, Wang Y, Zhang L. Chem. Soc. Rev. 2016; 45: 4448
  • 59 Wei Y, Shi M. ACS Catal. 2016; 6: 2515
  • 60 Chen C, Zou Y, Chen X, Zhang X, Rao W, Chan PWH. Org. Lett. 2016; 18: 4730
  • 61 García-Morales C, Echavarren AM. Synlett 2018; 29: 2225
  • 62 López-Carrillo V, Echavarren AM. J. Am. Chem. Soc. 2010; 132: 9292
  • 63 de Orbe ME, Amenós L, Kirillova MS, Wang Y, López-Carrillo V, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2017; 139: 10 302
  • 64 Trotuş I.-T, Zimmermann T, Schüth F. Chem. Rev. 2014; 114: 1761
  • 65 Scharnagel D, Escofet I, Armengol-Relats H, de Orbe ME, Korber JN, Echavarren AM. Angew. Chem. Int. Ed. 2020; 59: 4888
  • 66 Chirila A, Das BG, Paul ND, de Bruin B. ChemCatChem 2017; 9: 1413
  • 67 Wang Y, Wen X, Cui X, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2017; 139: 1049
  • 68 Levin MD, Kaszynski P, Michl J. Chem. Rev. 2000; 100: 169
  • 69 Dilmaç AM, Spuling E, de Meijere A, Bräse S. Angew. Chem. Int. Ed. 2017; 56: 5684
  • 70 Gianatassio R, Lopchuk JM, Wang J, Pan C.-M, Malins LR, Prieto L, Brandt TA, Collins MR, Gallego GM, Sach NW, Spangler JE, Zhu H, Zhu J, Baran PS. Science (Washington, D. C.) 2016; 351: 241
  • 71 Wu Z, Xu Y, Liu J, Wu X, Zhu C. Sci. China Chem. 2020; 63: 1025
  • 72 Belzner J, Szeimies G. Tetrahedron Lett. 1986; 27: 5839
  • 73 Wiberg KB, Waddell ST. J. Am. Chem. Soc. 1990; 112: 2194
  • 74 Yu S, Noble A, Bedford RB, Aggarwal VK. J. Am. Chem. Soc. 2019; 141: 20 325
  • 75 Liu H, Wei Y, Cai C. New J. Chem. 2016; 40: 674
  • 76 Allouche EMD, Al-Saleh A, Charette AB. Chem. Commun. (Cambridge) 2018; 54: 13 256
  • 77 Pechman Hv. Chem. Ber. 1894; 27: 1888
  • 78 Black TH. Aldrichimica Acta 1983; 16: 3
  • 79 Morandi B, Carreira EM. Science (Washington, D. C.) 2012; 335: 1471
  • 80 Altman LJ, Kowerski RC, Laungani DR. J. Am. Chem. Soc. 1978; 100: 6174
  • 81 Motherwell WB, Bégis G, Cladingboel DE, Jerome L, Sheppard TD. Tetrahedron 2007; 63: 6462
  • 82 Goudreau SR, Charette AB. J. Am. Chem. Soc. 2009; 131: 15 633
  • 83 Vicente R, González J, Riesgo L, González J, López LA. Angew. Chem. Int. Ed. 2012; 51: 8063
  • 84 Crumrine DS, Haberkamp TJ, Suther DJ. J. Org. Chem. 1975; 40: 2274
  • 85 Lévesque É, Goudreau SR, Charette AB. Org. Lett. 2014; 16: 1490
  • 86 Emerzian MA, Davenport W, Song J, Li J, Erden I. Adv. Synth. Catal. 2009; 351: 999
  • 87 Fillion E, Taylor NJ. J. Am. Chem. Soc. 2003; 125: 12 700
  • 88 den Hartog T, Toro JMS, Chen P. Org. Lett. 2014; 16: 1100
  • 89 Tchawou AASW, Raducan M, Chen P. Organometallics 2017; 36: 180
  • 90 Liu Z, Zhang X, Zanoni G, Bi X. Org. Lett. 2017; 19: 6646