Wang, M.  et al.: Science of Synthesis: Knowledge Updates 2024/3 DOI: 10.1055/sos-SD-133-00326

33.1.8.2 Alk-1-enyl Sulfides (Update 2024)

Weitere Informationen

Buch

Herausgeber: Wang, M. ; Drabowicz, J. ; Jiang, X. ; Campagne, J.-M.

Autoren: Gulder, T. ; Kretzschmar, M. ; Marciniszyn, J. P.; Kiełbasiński, P. ; Kwiatkowska, M. ; Zhu, H. ; Fan, Q. ; Mita, T. ; Rawat, V. K. ; Favre-Réguillon, A. ; Leclerc, E.

Titel: Knowledge Updates 2024/3

Online ISBN: 9783132457089; Buch-DOI: 10.1055/b000000969

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Knowledge Updates



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

Alk-1-enyl sulfides are an interesting class of compounds, which are widely used in organic synthesis. There are a large variety of methods for their preparation, employing both substrates and reagents as the sulfur source. Most recent advances (in the period 2006–2022) reported for the synthesis of alk-1-enyl sulfides have involved the preparation of variously substituted derivatives of the title compounds. The substituents include halogens (fluorine and polyfluoroalkyls, chlorine, bromine, and iodine), the nitro group, and acyloxy, ester, carboxy, sulfonyl, and amino groups. The application of various sulfur sources and synthetic strategies to form alk-1-enyl sulfides, and finally the synthesis of cyclic alk-1-enyl sulfides and polyene alk-1-enyl sulfides are also reported.

 
  • 1 Drabowicz J, Kiełbasiński P, Mikołajczyk M. Science of Synthesis 2007; 33: 114
  • 2 Velasco N, Virumbrales C, Sanz R, Suárez-Pantiga S, Fernández-Rodríguez MA. Org. Lett. 2018; 20: 2848
  • 3 Sunagawa DE, Ishida N, Iwamoto H, Ohashi M, Fruit C, Ogoshi S. J. Org. Chem. 2021; 86: 6015
  • 4 Timperley CM, Waters MJ, Greenall JA. J. Fluorine Chem. 2006; 127: 249
  • 5 Li J, Rao W, Wang S.-Y, Ji S.-J. J. Org. Chem. 2019; 84: 11 542
  • 6 Takayama R, Yamada A, Fuchibe K, Ichikawa J. Org. Lett. 2017; 19: 5050
  • 7 Taniguchi N. Synlett 2008; 849
  • 8 Taniguchi N. Tetrahedron 2009; 65: 2782
  • 9 Liang S, Jiang L, Yi W, Wei J. Org. Lett. 2018; 20: 7024
  • 10 Wu J.-J, Xu J, Zhao X. Chem.–Eur. J. 2016; 22: 15 265
  • 11 Villuendas P, Ruiz S, Vidossich P, Lledós A, Urriolabeitia EP. Chem.–Eur. J. 2018; 24: 13 124
  • 12 Higashimae S, Kurata D, Kawaguchi S, Kodama S, Sonoda M, Nomoto A, Ogawa A. J. Org. Chem. 2018; 83: 5267
  • 13 Guo C.-H, Chen D.-Q, Chen S, Liu X.-Y. Adv. Synth. Catal. 2017; 359: 2901
  • 14 Wei W, Wang L, Yue H, Jiang Y.-Y, Yang D. Org. Biomol. Chem. 2018; 16: 8379
  • 15 Sahoo H, Singh S, Baidya M. Org. Lett. 2018; 20: 3678
  • 16 Ji M, Yu J, Zhu C. Chem. Commun. (Cambridge) 2018; 54: 6812
  • 17 Song T, Li H, Wei F, Tung C.-H, Xu Z. Tetrahedron Lett. 2019; 60: 916
  • 18 Liu S, Tang L, Chen H, Zhao F, Deng G.-J. Org. Biomol. Chem. 2014; 12: 6076
  • 19 Di Giuseppe A, Castarlenas R, Peërez-Torrente JJ, Crucianelli M, Polo V, Sancho R, Lahoz FJ, Oro LA. J. Am. Chem. Soc. 2012; 134: 8171
  • 20 Weiss CJ, Wobser SD, Marks TJ. J. Am. Chem. Soc. 2009; 131: 2062
  • 21 Iwasaki M, Fujii T, Nakajima K, Nishihara Y. Angew. Chem. Int. Ed. 2014; 53: 13 880
  • 22 Iwasaki M, Fujii T, Yamamoto A, Nakajima K, Nishihara Y. Chem.–Asian J. 2014; 9: 58
  • 23 Wang J, Zhang S, Xu C, Wojtas Ł, Akhmedov NG, Chen H, Shi X. Angew. Chem. Int. Ed. 2018; 57: 6915
  • 24 Gogoi MP, Vanjari R, Prabagar B, Yang S, Dutta S, Mallick RK, Gandon V, Sahoo AK. Chem. Commun. (Cambridge) 2021; 57: 7521
  • 25 Wang J, Xiong H.-Y, Petit E, Bailly L, Pannecoucke X, Poisson T, Besset T. Chem. Commun. (Cambridge) 2019; 55: 8784
  • 26 Rather SA, Kumar A, Ahmed QN. Chem. Commun. (Cambridge) 2019; 55: 4511
  • 27 Siddaraju Y, Prabhu KR. J. Org. Chem. 2017; 82: 3084
  • 28 Wang J, Jia S, Okuyama K, Huang Z, Tokunaga E, Sumii Y, Shibata N. J. Org. Chem. 2017; 82: 11 939
  • 29 Kamigata N, Udodaira K, Shimizu T. J. Chem. Soc., Perkin Trans. 1 1997; 783
  • 30 Bao Y, Zhong L, Hou Q, Zhou Q, Yang F. Chin. J. Chem. 2018; 36: 1063
  • 31 Ren S, Xue B, Zheng T, Wang Y, Sun H, Li X, Fuhr O, Fenske D. Appl. Organomet. Chem. 2020; 34: e5291
  • 32 Chen Y, Wen S, Tian Q, Zhang Y, Cheng G. Org. Lett. 2021; 23: 7905
  • 33 Shimizu A, Horiuchi S, Hayashi R, Matsumoto K, Miyamoto Y, Morisawa Y, Wakabayashi T, Yoshida J. ARKIVOC 2018; 97 available online at www.arkat-usa.org/
  • 34 Fujie S, Matsumoto K, Suga S, Nokami T, Yoshida J. Tetrahedron 2010; 66: 2823
  • 35 Hu B, Zhou P, Rao K, Yang J, Li L, Yan S, Yu F. Tetrahedron Lett. 2018; 59: 1438
  • 36 Hassan AS, Askar AA, Naglah AM, Almehizia AA, Ragab A. Molecules 2020; 25: 2593
  • 37 Hassan AS, Moustafa GO, Morsy NM, Abdou AM, Hafez TS. Egypt. J. Chem. 2020; 63: 4469
  • 38 Morsy NM, Hassan AS, Hafez TS, Mahran MRH, Sadawe IA, Gbaj AM. J. Iran. Chem. Soc. 2021; 18: 47
  • 39 Makarov VA, Braun H, Richter M, Riabova OB, Kirchmair J, Kazakova ES, Seidel N, Wutzler P, Schmidtke M. ChemMedChem 2015; 10: 1629
  • 40 Chaube UJ, Vyas VK, Bhatt HG. RSC Adv. 2016; 6: 10 285
  • 41 Modi P, Patel S, Chhabria M. Bioorg. Chem. 2019; 87: 240
  • 42 Petrova OV, Sagitova EF, Ushakov IA, Sobenina LN, Mikhaleva AI, Trofimov BA. J. Sulfur Chem. 2015; 36: 145
  • 43 Sobenina LN, Mikhaleva AI, Sergeeva MP, Petrova OV, Aksamentova TN, Kozyreva OB, Toryashinova DSD, Trofimov BA. Tetrahedron 1995; 51: 4223
  • 44 Ishitobi K, Muto K, Yamaguchi J. ACS Catal. 2019; 9: 11 685
  • 45 Lu F, Yang Z, Wang T, Wang T, Zhang Y, Yuan Y, Lei A. Chin. J. Chem. 2019; 37: 547
  • 46 Kondrashov EV, Romanov AR, Ushakov IA, Rulev AYu. J. Sulfur Chem. 2017; 38: 18
  • 47 Zhao Q, Poisson T, Pannecoucke X, Bouillon J.-P, Besset T. Org. Lett. 2017; 19: 5106
  • 48 Liao Q, You W, Lou Z.-B, Wen L.-R, Xi C. Tetrahedron Lett. 2013; 54: 1475
  • 49 Bai Y.-B, Luo Z, Wang Y, Gao J.-M, Zhang L. J. Am. Chem. Soc. 2018; 140: 5860
  • 50 Imazaki Y, Shirakawa E, Hayashi T. Tetrahedron 2011; 67: 10 212
  • 52 Gökmen Z. Asian J. Chem. 2014; 26: 991
  • 53 Ibis C, Sahin A. Russ. J. Org. Chem. (Engl. Transl.) 2016; 52: 897
  • 54 Ibis C, Sahin A. Bull. Korean Chem. Soc. 2010; 31: 2255
  • 55 Zapol’skii VA, Namyslo JC, Gjikaj M, Kaufmann DE. Beilstein J. Org. Chem. 2014; 10: 1638
  • 56 Aydinli SG, Ozdamar Y, Sayil C, Deniz NG, Stasevych M, Zvarych V, Komarovska-Porokhnyavets O, Novikov V. Synth. Commun. 2020; 50: 3234
  • 57 Aydinli SG, Ibis C. E-J. Chem. 2010; 7: 1498
  • 58 Deniz NG, Ibis C. Heteroat. Chem. 2015; 26: 51
  • 59 Sayil Ç, Ibis C. Asian J. Chem. 2013; 25: 8093
  • 60 Onul N, Ertik O, Mermer N, Yanardag R. J. Chem. 2018; 4 386 031
  • 61 Ibis C, Özkök F. Acta Chim. Slov. 2012; 59: 294
  • 62 Zapol’skii VA, Namyslo JC, Gjikaj M, Kaufmanna DE. Z. Naturforsch., B 2010; 65: 843
  • 63 Ibiş C, Kirbaşlar FG, Aydinli G. Phosphorus, Sulfur Silicon Relat. Elem. 2005; 180: 365
  • 64 Ibis C, Ayla SS, Yavuz Ş, Asar H, Özkök F, Bahar H. Phosphorus, Sulfur Silicon Relat. Elem. 2018; 193: 358
  • 65 İbiş C, Gökmen Z, Çetin Z. Phosphorus, Sulfur Silicon Relat. Elem. 2012; 187: 965
  • 66 İbiş C, Gökmen Z. Phosphorus, Sulfur Silicon Relat. Elem. 2007; 182: 1053
  • 67 Gökmen Z, Deniz NG. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190: 1309
  • 68 Ibis C, Tuyun AF. Phosphorus, Sulfur Silicon Relat. Elem. 2012; 187: 1161
  • 69 Göksel FS, Aydin E, Ibiş C. Phosphorus, Sulfur Silicon Relat. Elem. 2014; 189: 1867
  • 70 Onul N, Brimo WMD, Ibis C. Phosphorus, Sulfur Silicon Relat. Elem. 2011; 186: 2180
  • 71 Dyachenko VD, Chernega AN. Russ. J. Org. Chem. (Engl. Transl.) 2006; 42: 945
  • 72 Dyachenko IV, Dyachenko VD, Dorovatovskii PV, Khrustalev VN, Torocheshnikov VN, Nenajdenko VG. Russ. J. Org. Chem. (Engl. Transl.) 2018; 54: 1785
  • 73 Armitt DJ, Bruce MI, Skelton BW, White AH. Organometallics 2008; 27: 3556
  • 74 Cheng H, Zhou X, Hu A, Ding S, Wang Y, Xiao Y, Zhang J. RSC Adv. 2018; 8: 34 088
  • 75 Paul K, Hwang JH, Choi JH, Jeong IH. Org. Lett. 2009; 11: 4728