Campagne, J.-M.  et al.: 2024 Science of Synthesis, 2024/1: Knowledge Updates 2024/1 DOI: 10.1055/sos-SD-120-00140
Knowledge Updates 2024/1

20.5.13.2 Arenecarboxylic Acid Esters (Update 2024)

Weitere Informationen

Buch

Herausgeber: Campagne, J.-M. ; Donohoe, T. J.; Fürstner, A. ; Jiang, X. ; Wang, M.

Autoren: Cheng, J. ; Chowdhury, S. ; Harris, P. A. ; Li, X. ; Liu, M. ; Liao, L.; Song, Q. ; Tang, R.-Y. ; Tobrman, T. ; Wang, L.; Wu, X.-F. ; Ying, J. ; Yu, J.-S. ; Zhang, Y.

Titel: Knowledge Updates 2024/1

Online ISBN: 9783132457058; Buch-DOI: 10.1055/b000000967

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Chemische Labormethoden, Stöchiometrie;Organometallchemie

Science of Synthesis Knowledge Updates



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

Arenecarboxylic acid esters are prevalent motifs in pharmaceuticals, agrochemicals, polymers, and natural products. They are also versatile building blocks in organic synthesis. Traditionally, esters are prepared via activation of acids or acid anhydrides, followed by nucleophilic substitution. However, these methods usually require harsh reaction conditions and two steps. Over the past couple of decades, alternative synthetic approaches have been developed, including Chan—Lam-type reactions, oxidative esterification, carbonylation, and addition of carboxylic acids to unsaturated carbon—carbon bonds. This review highlights recent developments of these transformations with some selected works reported between 2002 and 2022, and serves as an update to the previous (2007) Science of Synthesis chapter on the preparation of arenecarboxylic acid esters (Section 20.5.13).

 
  • 1 Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
  • 2 Allen CL, Williams JMJ. Chem. Soc. Rev. 2011; 40: 3405
  • 3 Swamy KCK, Kumar NNB, Balaraman E, Kumar KVPP. Chem. Rev. 2009; 109: 2551
  • 4 Hulsman N, Medema JP, Bos C, Jongejan A, Leurs R, Smit MJ, de Esch IJP, Richel D, Wijtmans M. J. Med. Chem. 2007; 50: 2424
  • 5 Haddleton DM, Waterson C. Macromolecules 1999; 32: 8732
  • 6 Nagamitsu T, Marumoto K, Nagayasu A, Fukuda T, Arima S, Uchida R, Ohshiro T, Harigaya Y, Tomoda H, Ōmura S. J. Antibiot. 2009; 62: 69
  • 7 Verma S, Baig RBN, Han C, Nadagouda MN, Varma RS. Green Chem. 2016; 18: 251
  • 8 James CA, Snieckus V. J. Org. Chem. 2009; 74: 4080
  • 9 Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Larock RC. Wiley VCH; New York 1999
  • 10 Yoon TP, Jacobsen EN. Science of Synthesis 2007; 20: 1285
  • 11 Qiao JX, Lam PYS. Synthesis 2011; 829
  • 12 Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234 Chem. Rev. 2014; 114: 899.
  • 13 Vijayan A, Rao DN, Radhakrishnan KV, Lam PYS, Das P. Synthesis 2021; 53: 805
  • 14 Zhang L, Zhang G, Zhang M, Cheng J. J. Org. Chem. 2010; 75: 7472
  • 15 Dai J.-J, Liu J.-H, Luo D.-F, Liu L. Chem. Commun. (Cambridge) 2011; 47: 677
  • 16 Huang F, Quach TD, Batey RA. Org. Lett. 2013; 15: 3150
  • 17 Jacobson CE, Martinez-Muñoz N, Gorin DJ. J. Org. Chem. 2015; 80: 7305
  • 18 Ruso JS, Rajendiran N, Kumaran RS. Tetrahedron Lett. 2014; 55: 2345
  • 19 Ekoue-Kovi K, Wolf C. Chem.–Eur. J. 2008; 14: 6302 Chem.–Eur. J. 2008; 14: 9463
  • 20 Tang S, Yuan J, Liu C, Lei A. Dalton Trans. 2014; 43: 13 460
  • 21 Qin C, Wu H, Chen J, Liu M, Cheng J, Su W, Ding J. Org. Lett. 2008; 10: 1537
  • 22 Rosa JN, Reddy RS, Candeias NR, Cal PMSD, Gois PMP. Org. Lett. 2010; 12: 2686
  • 23 Maji B, Vedachalan S, Ge X, Cai S, Liu X.-W. J. Org. Chem. 2011; 76: 3016
  • 24 Guo Y.-F, Mahmood S, Xu B.-H, Yao X.-Q, He H.-Y, Zhang S.-J. J. Org. Chem. 2017; 82: 1591
  • 25 Tschaen BA, Schmink JR, Molander GA. Org. Lett. 2013; 15: 500
  • 26 Gaspa S, Porcheddu A, De Luca L. Org. Lett. 2015; 17: 3666
  • 27 Delany EG, Fagan C.-L, Gundala S, Zeitler K, Connon SJ. Chem. Commun. (Cambridge) 2013; 49: 6513
  • 28 Sancineto L, Tidei C, Bagnoli L, Marini F, Lenardão EJ, Santi C. Molecules 2015; 20: 10 496
  • 29 Arde P, Ramanjaneyulu BT, Reddy V, Saxena A, Anand RV. Org. Biomol. Chem. 2012; 10: 848
  • 30 Maruani A, Lee MTW, Watkins G, Akhbar AR, Baggs H, Shamsabadi A, Richards DA, Chudasama V. RSC Adv. 2016; 6: 3372
  • 31 Wang L, Li J, Dai W, Lv Y, Zhang Y, Gao S. Green Chem. 2014; 16: 2164
  • 32 Liu M, Zhang Z, Yan J, Liu S, Liu H, Liu Z, Wang W, He Z, Han B. Chem 2020; 6: 3288
  • 33 Luo H, Wang L, Shang S, Li G, Lv Y, Gao S, Dai W. Angew. Chem. Int. Ed. 2020; 59: 19 268
  • 34 Kong W, Li B, Xu X, Song Q. J. Org. Chem. 2016; 81: 8436
  • 35 Dong J, Chen X, Ji F, Liu L, Su L, Mo M, Tang J.-S, Zhou Y. Appl. Organomet. Chem. 2021; 35: e6073
  • 36 Subaramanian M, Ramar PM, Rana J, Gupta VK, Balaraman E. Chem. Commun. (Cambridge) 2020; 56: 8143
  • 37 Brennführer A, Neumann H, Beller M. ChemCatChem 2009; 1: 28
  • 38 Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
  • 39 Liu Q, Zhang H, Lei A. Angew. Chem. Int. Ed. 2011; 50: 10 788
  • 40 Wu X.-F, Fang X, Wu L, Jackstell R, Neumann H, Beller M. Acc. Chem. Res. 2014; 47: 1041
  • 41 Sumino S, Fusano A, Fukuyama T, Ryu I. Acc. Chem. Res. 2014; 47: 1563
  • 42 Peng J.-B, Geng H.-Q, Wu X.-F. Chem 2019; 5: 526
  • 43 Munday RH, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 2754
  • 44 Watson DA, Fan X, Buchwald SL. J. Org. Chem. 2008; 73: 7096
  • 45 Wu X.-F, Neumann H, Beller M. ChemCatChem 2010; 2: 509
  • 46 Wang L, Neumann H, Spannenberg A, Beller M. Chem. Commun. (Cambridge) 2017; 53: 7469
  • 47 Liu Q, Li G, He J, Liu J, Li P, Lei A. Angew. Chem. Int. Ed. 2010; 49: 3371
  • 48 Zhang H, Shi R, Ding A, Lu L, Chen B, Lei A. Angew. Chem. Int. Ed. 2012; 51: 12 542
  • 49 Guo W, Lu L.-Q, Wang Y, Wang Y.-N, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 2265
  • 50 Majek M, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 2270
  • 51 Gautam P, Kathe P, Bhanage BM. Green Chem. 2017; 19: 823
  • 52 Cai C, Rivera NR, Balsells J, Sidler RR, McWilliams JC, Shultz CS, Sun Y. Org. Lett. 2006; 8: 5161
  • 53 Ai H.-J, Zhang Y, Zhao F, Wu X.-F. Org. Lett. 2020; 22: 6050
  • 54 Beller M, Seayad J, Tillack A, Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368
  • 55 Bruneau C, Dixneuf PH. Angew. Chem. Int. Ed. 2006; 45: 2176
  • 56 Hultzsch KC. Adv. Synth. Catal. 2005; 347: 367
  • 57 Hong S, Marks TJ. Acc. Chem. Res. 2004; 37: 673
  • 58 Bytschkov I, Doye S. Eur. J. Org. Chem. 2003; 935
  • 59 Oe Y, Ohta T, Ito Y. Chem. Commun. (Cambridge) 2004; 1620
  • 60 Taylor JG, Whittall N, Hii KK(M). Chem. Commun. (Cambridge) 2005; 5103
  • 61 Yang C.-G, He C. J. Am. Chem. Soc. 2005; 127: 6966
  • 62 Choi J.-C, Kohno K, Masuda D, Yasuda H, Sakakura T. Chem. Commun. (Cambridge) 2008; 777
  • 63 Perkowski AJ, Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 10 334
  • 64 Oe Y, Ohta T, Ito Y. Tetrahedron 2010; 51: 2806
  • 65 Goossen LJ, Paetzold J, Koley D. Chem. Commun. (Cambridge) 2003; 706
  • 66 Kawatsura M, Namioka J, Kajita K, Yamamoto M, Tsuji H, Itoh T. Org. Lett. 2011; 13: 3285
  • 67 Jeschke J, Engelhardt TB, Lang H. Eur. J. Org. Chem. 2016; 1548
  • 68 Yi CS, Gao R. Organometallics 2009; 28: 6585
  • 69 Hua R, Tian X. J. Org. Chem. 2004; 69: 5782
  • 70 Tan ST, Fan WY. Eur. J. Inorg. Chem. 2010; 4631
  • 71 Melis K, Samulkiewicz P, Rynkowski J, Verpoort F. Tetrahedron Lett. 2002; 43: 2713