Rosdahl, Jullia A.: 2022 Optical Coherence Tomography in Glaucoma DOI: 10.1055/b-0041-183574

10 Special Considerations: OCT in Childhood Glaucoma

More Information

Book

Editor: Rosdahl, Jullia A.

Authors: Aref, Ahmad A.; Conner, Ian; Cretara, Elizabeth Ann Zane; Downes, Rachel A.; El-Dairi, Mays A.; Freedman, Sharon F.; Geyman, Lawrence S.; Glaser, Tanya S.; Gupta, Divakar; Han, Ying; Kelly, Michael P.; Kim, Yong Woo; Marando, Catherine M.; Medeiros, Felipe A.; Oatts, Julius; Park, Elli; Park, Ki Ho; Schuman, Joel S.; Takusagawa, Hana L.; Thompson, Atalie Carina; Williams, Andrew; WuDunn, Darrell

Title: Optical Coherence Tomography in Glaucoma

Print ISBN: 9781684202478; Online ISBN: 9781684202980; Book DOI: 10.1055/b000000397

Subjects: Ophthalmology, Optometry

Thieme Clinical Collections (English Language)



 
Tanya S. Glaser, Michael P. Kelly, Mays A. El-Dairi, and Sharon F. Freedman

Summary

Optical coherence tomography (OCT) is an important tool for managing glaucoma in children, particularly as children with glaucoma, especially younger children, are not able to perform visual field testing. Special considerations when performing OCT imaging in children with glaucoma include how to optimize and maximize the child's attention and cooperation for image acquisition, as well as how to interpret the OCT results in light of normal ocular development and ocular variations among children. This chapter provides a summary of how OCT can be performed in pediatric patients and also clinical pearls for image acquisition. Suggestions for OCT image interpretation for children and pitfalls to avoid are also discussed.

 
  • 1 Xu L, Freedman SF, Silverstein E, Muir K, El-Dairi M. Longitudinal reproducibility of spectral domain optical coherence tomography in children with physiologic cupping and stable glaucoma.. J AAPOS 2019; 23 (5) 262.e1-262.e6 PubMed (PMID: 31513901)
  • 2 Vinekar A, Sivakumar M, Shetty R et al. A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity.. Eye (Lond) 2010; 24 (2) 379-382 PubMed (PMID: 20057510)
  • 4 Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM. Magnification characteristics of the Optical Coherence Tomograph STRATUS OCT 3000.. Ophthalmic Physiol Opt 2008; 28 (1) 21-28 PubMed (PMID: 18201332)
  • 5 Maldonado RS, Izatt JA, Sarin N et al. Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children.. Invest Ophthalmol Vis Sci 2010; 51 (5) 2678-2685 PubMed (PMID: 20071674)
  • 6 Vinekar A, Mangalesh S, Jayadev C, Maldonado RS, Bauer N, Toth CA. Retinal imaging of infants on spectral domain optical coherence tomography.. BioMed Res Int 2015; 2015: 782420 PubMed (PMID: 26221606)
  • 7 El-Dairi MA, Asrani SG, Enyedi LB, Freedman SF. Optical coherence tomography in the eyes of normal children.. Arch Ophthalmol 2009; 127 (1) 50-58 PubMed (PMID: 19139338)
  • 8 Rotruck JC, House RJ, Freedman SF et al. Optical coherence tomography normative peripapillary retinal nerve fiber layer and macular data in children 0–5 years of age.. Am J Ophthalmol 2019; 208: 323-330 PubMed (PMID: 31271744)
  • 9 Bayraktar S, Bayraktar Z, Yilmaz OF. Influence of scan radius correction for ocular magnification and relationship between scan radius with retinal nerve fiber layer thickness measured by optical coherence tomography.. J Glaucoma 2001; 10 (3) 163-169 PubMed (PMID: 11442177)
  • 10 Aykut V, Öner V, Taş M, Işcan Y, Ağaçhan A. Influence of axial length on peripapillary retinal nerve fiber layer thickness in children: a study by RTVue spectral-domain optical coherence tomography.. Curr Eye Res 2013; 38 (12) 1241-1247 PubMed (PMID: 23972028)
  • 11 Qian J, Wang W, Zhang X et al. Optical coherence tomography measurements of retinal nerve fiber layer thickness in Chinese children and teenagers.. J Glaucoma 2011; 20 (8) 509-513 PubMed (PMID: 21048509)
  • 12 Salchow DJ, Oleynikov YS, Chiang MF et al. Retinal nerve fiber layer thickness in normal children measured with optical coherence tomography.. Ophthalmology 2006; 113 (5) 786-791 PubMed (PMID: 16650674)
  • 13 Yanni SE, Wang J, Cheng CS et al. Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children.. Am J Ophthalmol 2013; 155 (2) 354-360.e1 PubMed (PMID: 23127751)
  • 14 Turk A, Ceylan OM, Arici C et al. Evaluation of the nerve fiber layer and macula in the eyes of healthy children using spectral-domain optical coherence tomography.. Am J Ophthalmol 2012; 153 (3) 552-559.e1 PubMed (PMID: 22019223)
  • 15 Al-Haddad C, Barikian A, Jaroudi M, Massoud V, Tamim H, Noureddin B. Spectral domain optical coherence tomography in children: normative data and biometric correlations.. BMC Ophthalmol 2014; 14: 53 PubMed (PMID: 24755354)
  • 16 Barrio-Barrio J, Noval S, Galdós M et al. Multicenter Spanish study of spectral-domain optical coherence tomography in normal children.. Acta Ophthalmol 2013; 91 (1) e56-e63 PubMed (PMID: 23347665)
  • 17 Elía N, Pueyo V, Altemir I, Oros D, Pablo LE. Normal reference ranges of optical coherence tomography parameters in childhood.. Br J Ophthalmol 2012; 96 (5) 665-670 PubMed (PMID: 22328811)
  • 18 Thau A, Lloyd M, Freedman S, Beck A, Grajewski A, Levin AV. New classification system for pediatric glaucoma: implications for clinical care and a research registry.. Curr Opin Ophthalmol 2018; 29 (5) 385-394 PubMed (PMID: 30096087)
  • 19 Weinreb RN, Grajewski AL, Papadopoulos M, Grigg J, Freedman S, World Glaucoma Association. Childhood glaucoma: the 9th consensus report of the World Glaucoma Association. In: Consensus Series 9. Amsterdam, The Netherlands: Kugler Publications; 2013. https://wga.one/wga/consensus-9/
  • 20 Mwanza JC, Budenz DL, Warren JL et al. Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma.. Br J Ophthalmol 2015; 99 (6) 732-737 PubMed (PMID: 25492547)
  • 21 Ghasia FF, Freedman SF, Rajani A, Holgado S, Asrani S, El-Dairi M. Optical coherence tomography in paediatric glaucoma: time domain versus spectral domain.. Br J Ophthalmol 2013; 97 (7) 837-842 PubMed (PMID: 23620420)
  • 22 El-Dairi MA, Holgado S, Asrani SG, Enyedi LB, Freedman SF. Correlation between optical coherence tomography and glaucomatous optic nerve head damage in children.. Br J Ophthalmol 2009; 93 (10) 1325-1330 PubMed (PMID: 19028739)
  • 23 Srinivasan S, Addepalli UK, Rao HL, Garudadri CS, Mandal AK. Spectral domain optical coherence tomography in children operated for primary congenital glaucoma.. Br J Ophthalmol 2014; 98 (2) 162-165 PubMed (PMID: 23740961)
  • 24 Morales-Fernandez L, Jimenez-Santos M, Martinez-de-la-Casa JM et al. Diagnostic capacity of SD-OCT segmented ganglion cell complex versus retinal nerve fiber layer analysis for congenital glaucoma.. Eye (Lond) 2018; 32 (8) 1338-1344 PubMed (PMID: 29643463)
  • 25 Silverstein E, Freedman S, Zéhil GP, Jiramongkolchai K, El-Dairi M. The macula in pediatric glaucoma: quantifying the inner and outer layers via optical coherence tomography automatic segmentation.. J AAPOS 2016; 20 (4) 332-336 PubMed (PMID: 27381526)
  • 26 Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography.. Am J Ophthalmol 2005; 139 (3) 509-517 PubMed (PMID: 15767062)
  • 27 Ely AL, El-Dairi MA, Freedman SF. Cupping reversal in pediatric glaucoma—evaluation of the retinal nerve fiber layer and visual field.. Am J Ophthalmol 2014; 158 (5) 905-915 PubMed (PMID: 25068638)
  • 28 Pilat A, Sibley D, McLean RJ, Proudlock FA, Gottlob I. High-resolution imaging of the optic nerve and retina in optic nerve hypoplasia.. Ophthalmology 2015; 122 (7) 1330-1339 PubMed (PMID: 25939636)
  • 29 Jeng-Miller KW, Cestari DM, Gaier ED. Congenital anomalies of the optic disc: insights from optical coherence tomography imaging.. Curr Opin Ophthalmol 2017; 28 (6) 579-586 PubMed (PMID: 28817389)
  • 30 Jiramongkolchai K, Freedman SF, El-Dairi MA. Retinal changes in pediatric glaucoma and nonglaucomatous optic atrophy.. Am J Ophthalmol 2016; 161: 188-95.e1 PubMed (PMID: 26498891)