Thromb Haemost 2009; 101(04): 635-642
DOI: 10.1160/TH08-11-0764
Theme Issue Article
Schattauer GmbH

Myocardial protection against reperfusion injury: The cGMP pathway

David Garcia-Dorado
1   Laboratorio de Cardiología Experimental, Area del Cor, Hospital Universitari Vall d’Hebron, Barcelona, Spain
,
Luis Agulló
1   Laboratorio de Cardiología Experimental, Area del Cor, Hospital Universitari Vall d’Hebron, Barcelona, Spain
,
Carmem Lluisa Sartorio
1   Laboratorio de Cardiología Experimental, Area del Cor, Hospital Universitari Vall d’Hebron, Barcelona, Spain
,
Marisol Ruiz-Meana
1   Laboratorio de Cardiología Experimental, Area del Cor, Hospital Universitari Vall d’Hebron, Barcelona, Spain
› Author Affiliations
Financial support:This study was supported by Fondo Investigación Sanitaria (FIS-RECAVA RD06/0014/0025); and Comisión Interministerial en Ciencia y Tecnología (CICYT SAF2005–1758).
Further Information

Publication History

Received: 24 November 2008

Accepted after minor revision: 08 February 2009

Publication Date:
23 November 2017 (online)

Summary

Reperfusion injury may cause myocardial cell death and limit the benefit achieved by restoration of coronary artery patency in patients with acute myocardial infarction. The mechanism includes altered Ca2+ handling with cytosolic and mitochondrial Ca2+ overload, Ca2+- and ATP-dependent hypercontraction, cytoskeletal fragility, mitochondrial permeability transition and gap junction-mediated propagation of cell death, as well as alterations in non-cardiomyocyte cells, in particular platelets and endothelial cells. cGMP modulates favorably all these mechanism, mainly through PKG-mediated actions, but cGMP synthesis is altered in reperfused cardiomyocytes and endothelial cells by mechanisms that are only partially understood. Stimulation of cGMP synthesis during initial reperfusion by means of natriuretic peptides has been found protective in different animal models and in patients. Moreover, increasing evidence indicates that cGMP is an important step in signal transduction of endogenous cardioprotection. Thus, the cGMP pathway appears as a key element in the pathophysiology of myocardial ischaemiareperfusion and as a promising therapeutic target in patients with acute myocardial infarction.

 
  • References

  • 1 Garcia-Dorado D, Théroux P, Duran JM. et al. Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation 1992; 85: 1160-1174.
  • 2 Meng HP, Lonsberry BB, Pierce GN. Influence of perfusate pH on the postischaemic recovery of cardiac contractile function: involvement of sodium-hydrogen exchange. J Pharmacol Exp Ther 1991; 258: 772-777.
  • 3 Schäfer C, Ladilov Y, Inserte J. et al. Role of the reverse mode of the Na+/Ca2+ exchanger in reoxyge-nation-induced cardiomyocyte injury. Cardiovasc Res 2001; 51: 241-250.
  • 4 Goldstein I, Lue TF, Padma-Nathan H. et al. Oral sildenafil in the treatment of erectile dysfunction. Sildenafil Study Group. N Engl J Med 1998; 338: 1397-1404.
  • 5 Cusson JR, Hamet P, Gutkowska J. et al. Effects of atrial natriuretic factor on natriuresis and cGMP in patients with essential hypertension. J Hypertens 1987; 5: 435-443.
  • 6 Vander Heide RS, Angelo JP, Altschuld RA. et al. Energy dependence of contraction band formation in perfused hearts and isolated adult myocytes. Am J Path-ol 1986; 125: 55-68.
  • 7 Piper HM, García-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res 1998; 38: 291-300.
  • 8 Barrabés JA, Garcia-Dorado D, Ruiz-Meana M. et al. Myocardial segment shrinkage during coronary reperfusion in situ. Relation to hypercontracture and myocardial necrosis. Pflugers Arch 1996; 431: 519-526.
  • 9 Inserte J, Garcia-Dorado D, Ruiz-Meana M. et al. Effect of inhibition of Na(+)/Ca(2+) exchanger at the time of myocardial reperfusion on hypercontracture and cell death. Cardiovasc Res 2002; 55: 739-748.
  • 10 Siegmund B, Schlack W, Ladilov YV. et al. Halothane protects cardiomyocytes against reoxygenation-induced hypercontracture. Circulation 1997; 96: 4372-4379.
  • 11 Abdallah Y, Gkatzoflia A, Pieper H. et al. Mechanism of cGMP-mediated protection in a cellular model of myocardial reperfusion injury. Cardiovasc Res 2005; 66: 123-131.
  • 12 Ruiz-Meana M, García-Dorado D, González MA. et al. Effect of osmotic stress on sarcolemmal integrity of isolated cardiomyocytes following transient metabolic inhibition. Cardiovasc Res 1995; 30: 64-69.
  • 13 Inserte J, Garcia-Dorado D, Hernando V. et al. Cal-pain-mediated impairment of Na+/K+-ATPase activity during early reperfusion contributes to cell death after myocardial ischaemia. Circ Res 2005; 97: 465-473.
  • 14 Inserte J, Garcia-Dorado D, Hernando V. et al. Ischaemic preconditioning prevents calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion. Cardiovasc Res 2006; 70: 364-373.
  • 15 Inserte J, Garcia-Dorado D, Ruiz-Meana M. et al. Ischaemic preconditioning attenuates calpain-mediated degradation of structural proteins through a protein kinase A-dependent mechanism. Cardiovasc Res 2004; 64: 105-114.
  • 16 Garcia-Dorado D, Théroux P, Munoz R. et al. Favorable effects of hyperosmotic reperfusion on myocardial edema and infarct size. Am J Physiol 1992; 262: H17-22.
  • 17 Ruiz-Meana M, Garcia-Dorado D, Hofstaetter B. et al. Propagation of cardiomyocyte hypercontracture by passage of Na(+) through gap junctions. Circ Res 1999; 85: 280-287.
  • 18 Garcia-Dorado D, Inserte J, Ruiz-Meana M. et al. Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation 1997; 96: 3579-3586.
  • 19 Rodriguez-Sinovas A, García-Dorado D, RuizMeana M. et al. Enhanced effect of gap junction un-couplers on macroscopic electrical properties of reper-fused myocardium. J Physiol 2004; 559: 245-257.
  • 20 Duchen MR, McGuinness O, Brown LA. et al. On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res 1993; 27: 1790-1794.
  • 21 Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 1995; 307: 93-98.
  • 22 Di Lisa F, Menabo R, Canton M. et al. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in post-ischaemic reperfusion of the heart. J Biol Chem 2001; 276: 2571-2575.
  • 23 Halestrap AP, Brennerb C. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 2003; 10: 1507-1525.
  • 24 Honda HM, Korge P, Weiss JN. Mitochondria and ischaemia/reperfusion injury. Ann N Y Acad Sci 2005; 1047: 248-258.
  • 25 Ruiz-Meana M, Abellán A, Miró-Casas E. et al. Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol 2007; 102: 542-552.
  • 26 Barrabés JA, Garcia-Dorado D, Oliveras J. et al. Intimal injury in a transiently occluded coronary artery increases myocardial necrosis. Effect of aspirin. Pflugers Arch 1996; 432: 663-670.
  • 27 Barrabés JA, Garcia-Dorado D, Soriano B. et al. Dynamic intracoronary thrombosis does not cause significant downstream platelet embolization. Cardiovasc Res 2000; 47: 265-273.
  • 28 Barrabés JA, Garcia-Dorado D, Mirabet M. et al. Antagonism of selectin function attenuates microvascular platelet deposition and platelet-mediated myocardial injury after transient ischaemia. J Am Coll Cardiol 2005; 45: 293-299.
  • 29 Mirabet M, Garcia-Dorado D, Ruiz-Meana M. et al. Thrombin increases cardiomyocyte acute cell death after ischaemia and reperfusion. J Mol Cell Cardiol 2005; 39: 277-283.
  • 30 Barrabés JA, Mirabet M, Agulló L. et al. Platelet deposition in remote cardiac regions after coronary occlusion. Eur J Clin Invest 2007; 37: 939-946.
  • 31 Hess ML, Rowe GT, Caplan M. et al. Identification of hydrogen peroxide and hydroxyl radicals as mediators of leukocyte-induced myocardial dysfunction. Limitation of infarct size with neutrophil inhibition and depletion. Adv Myocardiol 1985; 5: 159-175.
  • 32 Tofukuji M, Metais C, Collard CD. et al. Effect of sialyl Lewis(x) oligosaccharide on myocardial and cerebral injury in the pig. Ann Thorac Surg 1999; 67: 112-119.
  • 33 Ceriana P. Effect of myocardial ischaemia-reperfusion on granulocyte elastase release. Anaesth Intensive Care 1992; 20: 187-190.
  • 34 Hempel AM, Friedrich M, Schlüter KD. et al. ANP protects against reoxygenation-induced hypercontracture in adult cardiomyocytes. Am J Physiol 1997; 273: 244-249.
  • 35 Agulló L, García-Dorado D, Inserte J. et al. L-argi-nine limits myocardial cell death secondary to hypoxiareoxygenation by a cGMP-dependent mechanism. Am J Physiol 1999; 276: H1574-1580.
  • 36 Inserte J, Garcia-Dorado D, Agulló L. et al. Urodi-latin limits acute reperfusion injury in the isolated rat heart. Cardiovasc Res 2000; 45: 351-359.
  • 37 O’Neill SC, Miller L, Hinch R. et al. Interplay between SERCA and sarcolemmal Ca2+ efflux pathways controls spontaneous release of Ca2+ from the sarcoplasmic reticulum in rat ventricular myocytes. J Physiol 2004; 559: 121-128.
  • 38 Ammendola A, Geiselhöringer A, Hofmann F. et al. Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Ibeta. J Biol Chem 2001; 276: 24153-24159.
  • 39 De Mello WC. Atrial natriuretic factor reduces cell coupling in the failing heart, an effect mediated by cyclic GMP. J Cardiovasc Pharmacol 1998; 32: 75-79.
  • 40 Lochner A, Genade S, Tromp E. et al. Role of cyclic nucleotide phosphodiesterases in ischaemic preconditioning. Mol Cell Biochem 1998; 1861: 169-175.
  • 41 D’Souza SP, Yellon DM, Martin C. et al. B-type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am J Physiol Heart Circ Physiol 2003; 284: H1592-1600.
  • 42 Kim JS, Ohshima S, Pediaditakis P. et al. Nitric oxide protects rat hepatocytes against reperfusion injury mediated by the mitochondrial permeability transition. Hepatology 2004; 39: 1533-1543.
  • 43 Moro MA, Russel RJ, Cellek S. et al. cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci USA 1996; 93: 1480-1485.
  • 44 Heller R, Bussolino F, Ghigo D. et al. Activation of endothelial guanylate cyclase inhibits cellular reactivity. Agents Actions Suppl 1995; 45: 177-181.
  • 45 Murohara T, Scalia R, Lefer AM. Lysophosphatidylcholine promotes P-selectin expression in platelets and endothelial cells. Possible involvement of protein kinase C activation and its inhibition by nitric oxide donors. Circ Res 1996; 78: 780-789.
  • 46 Hempel A, Noll T, Muhs A. et al. Functional antagonism between cAMP and cGMP on permeability of coronary endothelial monolayers. Am J Physiol Heart Circ Physiol 1996; 270: H1264-H1271.
  • 47 Kubes P. Nitric oxide-induced microvascular permeability alterations: a regulatory role for cGMP. Am J Physiol Heart Circ Physiol 1993; 265: H1909-H1915.
  • 48 Yoshida K, Yoshimura K, Haniuda M. L-arginine inhibits ischemia-reperfusion lung injury in rabbits. J Surg Res 1999; 85: 9-16.
  • 49 Lucas KA, Pitari GM, Kazerounian S. et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 2000; 52: 375-414.
  • 50 Pyriochou A, Papapetropoulos A. Soluble guanylyl cyclase: more secrets revealed. Cell Signal 2005; 17: 407-413.
  • 51 Kuhn M. Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 2003; 93: 700-709.
  • 52 Costa MA, Elesgaray R, Balaszczuk AM. et al. Role of NPR-C natriuretic receptor in nitric oxide system activation induced by atrial natriuretic peptide. Regul Pept 2006; 135: 63-68.
  • 53 Mount PF, Kemp BE, Power DA. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol 2007; 42: 271-279.
  • 54 Braam B, Verhaar MC. Understanding eNOS for pharmacological modulation of endothelial function: a translational view. Curr Pharm Des. 2007; 13: 1727-1740.
  • 55 Dudzinski DM, Michel T. Life history of eNOS: partners and pathways. Cardiovasc Res 2007; 75: 247-260.
  • 56 Duda T, Goraczniak R, Sharma RK. Distinct inhibitory ATP-regulated modulatory domain (ARMi) in membrane guanylate cyclases. Biochem J 1996; 319: 279-283.
  • 57 Bellamy TC, Garthwaite J. Sub-second kinetics of the nitric oxide receptor, soluble guanylyl cyclase, in intact cerebellar cells. J Biol Chem 2001; 276: 4287-4292.
  • 58 Zwiller J, Revel MO, Malviya AN. Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro. J Biol Chem 1985; 260: 1350-1353.
  • 59 Kostic TS, Tomi M, Andric SA. et al. Calcium-independent and cAMP-dependent modulation of soluble guanylyl cyclase activity by G protein-coupled receptors in pituitary cells. J Biol Chem 2002; 277: 16412-16418.
  • 60 Murthy KS. Modulation of soluble guanylate cyclase activity by phosphorylation. Neurochem Int 2004; 45: 845-851.
  • 61 Zabel U, Kleinschnitz C, Oh P. et al. Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide. Nat Cell Biol 2002; 4: 307-311.
  • 62 Agulló L, Garcia-Dorado D, Escalona N. et al. Membrane association of nitric oxide-sensitive guanylyl cyclase in cardiomyocytes. Cardiovasc Res 2005; 68: 65-74.
  • 63 Zweier JL, Talukder MA. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 2006; 70: 181-190.
  • 64 Huk I, Nanobashvili J, Neumayer C. et al. L-argi-nine treatment alters the kinetics of nitric oxide and superoxide release and reduces ischaemia/reperfusion injury in skeletal muscle. Circulation 1997; 96: 667-675.
  • 65 Depré C, Hue L. Cyclic GMP in the perfused heart. Effect of ischaemia, anoxia and nitric oxide synthase inhibitor. FEBS Lett 1994; 345: 241-245.
  • 66 Maulik N, Engelman DT, Watanabe M. et al. Nitric oxide signaling in ischaemic heart. Cardiovasc Res 1995; 30: 593-601.
  • 67 Nesher R, Robinson WF, Gibb L. et al. Cyclic nucleotide levels in the perfused rat heart subjected to hypoxia. Experientia 1977; 33: 215-217.
  • 68 Yamaguchi F, Nasa Y, Yabe K. et al. Activation of cardiac muscarinic receptor and ischaemic preconditioning effects in in situ rat heart. Heart Vessels 1997; 12: 74-83.
  • 69 Hoshida S, Yamashita N, Kawahara K. et al. Amelioration by quinapril of myocardial infarction induced by coronary occlusion/reperfusion in a rabbit model of atherosclerosis. Possible mechanisms. Circulation 1999; 99: 434-440.
  • 70 Padilla F, Garcia-Dorado D, Agulló L. et al. Intravenous administration of the natriuretic peptide urodi-latin at low doses during coronary reperfusion limits infarct size in anesthetized pigs. Cardiovasc Res 2001; 51: 592-600.
  • 71 Agulló L, Garcia-Dorado D, Escalona N. et al. Effect of ischaemia on soluble and particulate guanylyl cyclase-mediated cGMP synthesis in cardiomyocytes. Am J Physiol Heart Circ Physiol 2003; 284: 2170-2176.
  • 72 Geisbuhler TP, Schwager TL. Effect of anoxia on cyclic nucleotides and inositol phosphate turnover in cardiac myocytes. J Mol Cell Cardiol 1996; 28: 1857-1866.
  • 73 Agulló L, Garcia-Dorado D, Escalona N. et al. Hypoxia and acidosis impair cGMP synthesis in microvascular coronary endothelial cells. Am J Physiol Heart Circ Physiol 2002; 283: H917-925.
  • 74 Hempel AM, Friedrich M, Schlüter KD. et al. ANP protects against reoxygenation-induced hypercontracture in adult cardiomyocytes. Am J Physiol 1997; 273: 244-249.
  • 75 Padilla F, Garcia-Dorado D, Agulló L. et al. L-Argi-nine administration prevents reperfusion-induced cardiomyocyte hypercontracture and reduces infarct size in the pig. Cardiovasc Res 2000; 46: 412-420.
  • 76 Yang XM, Philipp S, Downey JM. et al. Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol 2006; 101: 311-318.
  • 77 Wakui S. Experimental study on myocardial protection by adjunct use of carperitide (hANP) in cardiac surgery. Ann Thorac Cardiovasc Surg 2005; 11: 12-20.
  • 78 du Toit EF, Rossouw E, Salie R. et al. Effect of sildenafil on reperfusion function, infarct size, and cyclic nucleotide levels in the isolated rat heart model. Cardiovasc Drugs Ther 2005; 19: 23-31.
  • 79 Maas O, Donat U, Frenzel M. et al. Vardenafil protects isolated rat hearts at reperfusion dependent on GC and PKG. Br J Pharmacol 2008; 154: 25-31.
  • 80 Hayashi M, Tsutamoto T, Wada A. et al. Intravenous atrial natriuretic peptide prevents left ventricular remodeling in patients with first anterior acute myocardial infarction. J Am Coll Cardiol 2001; 37: 1820-1826.
  • 81 Kitakaze M, Asakura M, Kim J. et al. J-WIND investigators.. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet 2007; 370: 1483-1493.
  • 82 Downey JM, Krieg T, Cohen MV. Mapping preconditioning’s signaling pathways: an engineering approach. Ann NY Acad Sci 2008; 1123: 187-196.
  • 83 Krieg T, Qin Q, McIntosh EC. et al. ACh and adeno-sine activate PI3-kinase in rabbit hearts through trans-activation of receptor tyrosine kinases. Am J Physiol Heart Circ Physiol 2002; 283: H2322-2330.
  • 84 Oldenburg O, Qin Q, Krieg T. et al. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol 2004; 286: H468-476.
  • 85 Qin Q, Yang XM, Cui L. et al. Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism. Am J Physiol Heart Circ Physiol 2004; 287: H712-718.
  • 86 Costa AD, Garlid KD, West IC. et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 2005; 97: 329-336.
  • 87 Hausenloy DJ, Tsang A, Mocanu MM. et al. Ischaemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 2005; 288: H971-976.
  • 88 Juhaszova M, Zorov DB, Kim SH. et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 2004; 113: 1535-1549.
  • 89 Rodriguez-Sinovas A, Boengler K, Cabestrero A. et al. Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res 2006; 99: 93-101.
  • 90 Ruiz-Meana M, Rodríguez-Sinovas A, Cabestrero A. et al. Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury. Cardiovasc Res 2008; 77: 325-333.
  • 91 Heinzel FR, Luo Y, Li X. et al. Impairment of diaz-oxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 2005; 97: 583-586.
  • 92 Heusch G, Büchert A, Feldhaus S. et al. No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 2006; 101: 354-356.
  • 93 Ruiz-Meana M, Pina P, Garcia-Dorado D. et al. Glycine protects cardiomyocytes against lethal reoxygenation injury by inhibiting mitochondrial permeability transition. J Physiol 2004; 558: 873-882.
  • 94 Inserte J, Barba I, Hernando V. et al. Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium. Cardiovasc Res 2009; 81: 116-122.