Neuropediatrics 2007; 38(3): 130-136
DOI: 10.1055/s-2007-985904
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Cortical Neuromodulation by Constraint-Induced Movement Therapy in Congenital Hemiparesis: An fMRI Study

H. Juenger 1 , 2 [*] , M. Linder-Lucht 3 [*] , M. Walther 3 , S. Berweck 4 [*] , V. Mall 3 [*] , M. Staudt 1 , 2 [*]
  • 1Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
  • 2Section Experimental MR of the CNS, Department of Neuroradiology, Radiological Clinic, University of Tübingen, Germany
  • 3Department of Neuropediatrics and Muscle Disorders, University Children's Hospital, Freiburg, Germany
  • 4Department of Pediatric Neurology and Developmental Medicine, Dr. von Hauners’ Children's Hospital, University of Munich, Munich, Germany
Further Information

Publication History

received 05. 12. 2006

accepted 07. 08. 2007

Publication Date:
05 November 2007 (online)

Abstract

Objective: The aim of this study was to assess neuromodulative effects of CIMT in congenital hemiparesis.

Patients and Methods: Ten patients (age range: 10-30 years) with congenital hemiparesis due to unilateral cortico-subcortical infarctions in the middle cerebral artery territory, and with preserved cortico-spinal projections from the affected hemisphere to the paretic hand, were included. After a twelve-day period of constraint-induced movement therapy (CIMT), all showed a significant improvement of paretic hand function. Immediately before and after therapy, functional MRI during active and passive hand movements was performed to monitor cortical activation.

Results: Four patients showed consistent increases in cortical activation during movements of the paretic hand in the primary sensorimotor cortex of the affected hemisphere. Of the remaining six patients, three showed similar changes, but these results were potentially contaminated by an improved task performance after therapy. No significant alteration in activation was observed in two patients, and one showed movement artifacts.

Conclusions: Even a short period of CIMT can induce changes of cortical activation in congenital hemiparesis. In our sample, increases in fMRI activation were consistently observed in the primary sensorimotor cortex of the affected hemisphere. Thus, the potential for neuromodulation is preserved in the affected hemisphere after early brain lesions.

References

  • 1 Carey JR, Kimberley TJ, SM. et al . Analysis of fMRI and finger tracking training in subjects with chronic stroke.  Brain. 2002;  125 773-788
  • 2 Carr LJ, Harrison LM, Evans AL, Stephens JA. Patterns of central motor reorganization in hemiplegic cerebral palsy.  Brain. 1993;  116 1223-1247
  • 3 Cramer SC, Weisskoff RM, Schaechter JD, Nelles G, Foley M, Finklestein SP. et al . Motor cortex activation is related to force of squeezing.  Hum Brain Mapp. 2002;  16 197-205
  • 4 Dong Y, Dobkin BH, Cen SY, Wu AD, Winstein CJ. Motor cortex activation during treatment may predict therapeutic gains in paretic hand function after stroke.  Stroke. 2006;  37 1552-1555
  • 5 Gordon AM, Charles J, Wolf SL. Methods of constraint-induced movement therapy for children with hemiplegic cerebral palsy: development of a child-friendly intervention for improving upper-extremity function.  Arch Phys Med Rehabil. 2005;  86 837-844
  • 6 Hamzei F, Liepert J, Dettmers C, Weiller C, Rijntjes M. Two different reorganization patterns after rehabilitative therapy: An exploratory study with fMRI and TMS.  Neuroimage. 2006;  31 710-720
  • 7 Hlustik P, Solodkin A, Noll DC, Small SL. Cortical plasticity during three-week motor skill learning.  J Clin Neurophysiol. 2004;  21 180-191
  • 8 Hlustik P, Mayer M. Paretic hand in stroke: from motor cortical plasticity research to rehabilitation.  Cogn Behav Neurol. 2006;  19 34-40
  • 9 Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy.  Brain. 2002;  125 2731-2742
  • 10 Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG. Functional MRI evidence for adult motor cortex plasticity during motor skill learning.  Nature. 1995;  377 155-158
  • 11 Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R. et al . The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex.  Proc Natl Acad Sci. 1998;  95 861-868
  • 12 Klose U, Erb M, Wildgruber D, Müller E, Grodd W. Improvement of the acquisition of a large amount of MR images on a conventional whole body system.  Magn Reson Imaging. 1999;  17 471-474
  • 13 Krageloh-Mann I. Imaging of early brain injury and cortical plasticity.  Exp Neurol. 2004;  190 84-90
  • 14 Kunkel A, Kopp B, Muller G. et al . Constraint-induced movement therapy for motor recovery in chronic stroke patients.  Arch Phys Med Rehabil. 1999;  80 624-628
  • 15 Liepert J, Miltner WH, Bauder H. et al . Motor cortex plasticity during constraint-induced movement therapy in stroke patients.  Neurosci Lett. 1998;  250 5-8
  • 16 Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans.  Stroke. 2000;  6 1210-1216
  • 17 Liepert J, Hamzei F, Weiller C. Lesion-induced and training-induced brain reorganization.  Restor Neurol Neurosci. 2004;  22 269-277
  • 18 Lindberg P, Schmitz C, Forssberg H, Engardt M, Borg J. Effects of passive-active movement training on upper limb motor function and cortical activation in chronic patients with stroke: a pilot study.  J Rehabil Med. 2004;  36 117-123
  • 19 Mall V, Linder M, Herpers M. et al . Recruitment of the sensorimotor cortex - a developmental fMRI study.  Neuropediatrics. 2005;  36 373-379
  • 20 Mark VW, Taub E, Morris DM. Neuroplasticity and constraint-induced movement therapy.  Eura Medicophys. 2006;  42 269-284
  • 21 Miltner WH, Bauder H, Sommer M, Dettmers C, Taub E. Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication.  Stroke. 1999;  30 586-592
  • 22 Nelles G, Jentzen W, Jueptner M, Muller S, Diener HC. Arm training induced brain plasticity in stroke studied with serial positron emission tomography.  Neuroimage. 2001;  13 1146-1154
  • 23 Plewnia C, Bartels M, Cohen L, Gerloff C. Noradrenergic modulation of human cortex excitability by the presynaptic alpha(2)-antagonist yohimbine.  Neurosci Lett. 2001;  307 41-44
  • 24 Plewnia C, Hoppe J, Hiemke C, Bartels M, Cohen LG, Gerloff C. Enhancement of human cortico-motoneuronal excitability by the selective norepinephrine reuptake inhibitor reboxetine.  Neurosci Lett. 2002;  330 231-234
  • 25 Schaechter JD, Kraft E, Hilliard TS. et al . Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study.  Neurorehabil Neural Repair. 2002;  16 326-338
  • 26 Scheidtmann K, Fries W, Muller F, Koenig E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study.  Lancet. 2001;  358 787-790
  • 27 Shaffer JP. Multiple Hypothesis Testing.  Annu Rev Psychol. 1995;  46 561-584
  • 28 Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krägeloh-Mann I. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study.  Brain. 2002;  125 2222-2237
  • 29 Staudt M, Gerloff C, Grodd W, Holthausen H, Niemann G, Krägeloh-Mann I. Reorganization in congenital hemiparesis acquired at different gestational ages.  Ann Neurol. 2004;  56 854-863
  • 30 Szaflarski JP, Page SJ, Kissela BM, Lee JH, Levine P, Strakowski SM. Cortical reorganization following modified constraint-induced movement therapy: a study of 4 patients with chronic stroke.  Arch Phys Med Rehabil. 2006;  87 1052-1058
  • 31 Taub E, Miller NE, Novack TA. et al . Technique to improve chronic motor deficit after stroke.  Arch PhysMed Rehabil. 1993;  74 347-354
  • 32 Taub E, Crago JE, Burgio LD. et al . An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping.  J Exp Anal Behav. 1994;  61 281-293
  • 33 Taub E, Ramey SL, DeLuca S, Echols K. Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment.  Pediatrics. 2004;  113 305-312
  • 34 Ungerleider LG, Doyon J, Karni A. Imaging brain plasticity during motor skill learning.  Neurobiol Learn Mem. 2002;  78 553-564
  • 35 Vandermeeren Y, Sebire G, Grandin CB, Thonnard JL, Schlogel X, De Volder AG. Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study.  Neuroimage. 2003;  20 289-301
  • 36 Mier HI van, Perlmutter JS, Petersen SE. Functional changes in brain activity during acquisition and practice of movement sequences.  Motor Control. 2004;  8 500-520
  • 37 Wittenberg GF, Chen R, Ishii K. et al . Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation.  Neurorehabil Neural Repair. 2003;  17 48-57
  • 38 Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing Wolf motor function test as outcome measure for research in patients after stroke.  Stroke. 2001;  32 1635-1639
  • 39 Yousry TA, Schmid UD, Alkadhi H. et al . Localization of the motor hand area to a knob on the precentral gyrus.  A new landmark. Brain. 1997;  120 141-157

1 These authors contributed equally to this work

Correspondence

Dr. H. Juenger

Department of Pediatric Neurology

University Children's Hospital

Hoppe-Seyler-Str. 1

72076 Tübingen

Germany

Phone: +49/7071/298 14 48

Fax: +49/7071/29 54 73

Email: Hendrik.Juenger@med.uni-tuebingen.de