Exp Clin Endocrinol Diabetes 2005; 113(7): 381-387
DOI: 10.1055/s-2005-865716
Article

J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Quantitative Evaluation of a Monoclonal Antibody and its Fragment as Potential Markers for Pancreatic Beta Cell Mass

C. S. Hampe1 , A. R. Wallen1 , M. Schlosser2 , M. Ziegler3 , I. R. Sweet1
  • 1Department of Medicine, University of Washington, Seattle, Washington, USA
  • 2Institute of Pathophysiology, Ernst Moritz Arndt University of Greifswald, Karlsburg, Germany
  • 3Institute of Diabetes „Gerhardt Katsch“, Karlsburg, Germany
Further Information

Publication History

Received: October 13, 2004 First decision: February 2, 2005

Accepted: April 28, 2005

Publication Date:
18 July 2005 (online)

Abstract

Antibodies, due to their high specificities and retention, represent potential beta cell imaging agents, however their slow clearance from the blood may preclude their use. Antibody fragments (Fabs) have much higher clearance and if they can be made with similar binding characteristics, would be more efficacious agents. An existing beta cell specific antibody (K14D10) and its Fab were evaluated with a previously developed screening assay. The Fab and the intact immunoglobulin (IgG) had similar affinities (6 - 20 nM), binding sites (300 000 - 700 000 sites/cell), and binding kinetics (t1/2 = 8 - 18 minutes) for beta cells. However, the cellular specificity was far below the estimated requisite values needed to overcome the very low beta cell mass in the pancreas. The Fab cleared the blood twice as fast as the IgG, but did not preferentially accumulate into pancreas. Thus, generation of Fabs from IgGs with high beta cell binding and blood clearance appears feasible, but in order for molecules to be useful for tracking beta cell mass, antibodies of greater cellular specificity will have to be used.

References

  • 1 Adams G P, Schier R. Generating improved single-chain Fv molecules for tumor targeting.  J Immunol Methods. 1999;  231 249-260
  • 2 Asfari M, Janjic D, Meda P, Li G, Halban P A, Wollheim C B. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines.  Endocrinology. 1992;  130 167-178
  • 3 Bazin-Redureau M I, Renard C B, Scherrmann J M. Pharmacokinetics of heterologous and homologous immunoglobulin G, F(ab')2 and Fab after intravenous administration in the rat.  J Pharm Pharmacol. 1997;  49 277-281
  • 4 Boyle C C, Paine A J, Mather S J. The mechanism of hepatic uptake of a radiolabelled monoclonal antibody.  Int J Cancer. 1992;  50 912-917
  • 5 Brinkmann U, Webber K, Di Carlo A, Beers R, Chowdhury P, Chang K, Chaudhary V, Gallo M, Pastan I. Cloning and expression of the recombinant FAb fragment of monoclonal antibody K1 that reacts with mesothelin present on mesotheliomas and ovarian cancers.  Int J Cancer. 1997;  71 638-644
  • 6 Buschard K, Brogren C H, Ropke C, Rygaard J. Antigen expression of the pancreatic beta-cells is dependent on their functional state, as shown by a specific, BB rat monoclonal autoantibody IC2.  Apmis. 1988;  96 342-346
  • 7 Camera L, Kinuya S, Garmestani K, Pai L H, Brechbiel M W, Gansow O A, Paik C H, Pastan I, Carrasquillo J A. Evaluation of a new DTPA-derivative chelator: comparative biodistribution and imaging studies of 111In-labeled B3 monoclonal antibody in athymic mice bearing human epidermoid carcinoma xenografts.  Nucl Med Biol. 1993;  20 955-962
  • 8 Carter P, Kelley R F, Rodrigues M L, Snedecor B, Covarrubias M, Velligan M D, Wong W L, Rowland A M, Kotts C E, Carver M E. et al . High level Escherichia coli expression and production of a bivalent humanized antibody fragment.  Biotechnology (NY). 1992;  10 163-167
  • 9 Casey J L, Napier M P, King D J, Pedley R B, Chaplin L C, Weir N, Skelton L, Green A J, Hope-Stone L D, Yarranton G T, Begent R H. Tumour targeting of humanised cross-linked divalent-Fab' antibody fragments: a clinical phase I/II study.  Br J Cancer. 2002;  86 1401-1410
  • 10 Colcher D, Bird R, Roselli M, Hardman K D, Johnson S, Pope S, Dodd S W, Pantoliano M W, Milenic D E, Schlom J. In vivo tumor targeting of a recombinant single-chain antigen-binding protein.  J Natl Cancer Inst. 1990;  82 1191-1197
  • 11 Colcher D, Pavlinkova G, Beresford G, Booth B J, Choudhury A, Batra S K. Pharmacokinetics and biodistribution of genetically-engineered antibodies.  Q J Nucl Med. 1998;  42 225-241
  • 12 Covell D G, Barbet J, Holton O D, Black C D, Parker R J, Weinstein J N. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab')2, and Fab' in mice.  Cancer Res. 1986;  46 3969-3978
  • 13 DeNardo S J, Peng J S, DeNardo G L, Mills S L, Epstein A L. Immunochemical aspects of monoclonal antibodies important for radiopharmaceutical development.  Int J Rad Appl Instrum B. 1986;  13 303-310
  • 14 Garnuszek P, Licinska I, Fiedor P, Mazurek A P. The synthesis, radioiodination and preliminary biological study of the new carboxylic derivatives of dithizone.  Appl Radiat Isot. 1998;  49 1563-1571
  • 15 Hampe C S, Lundgren P, Daniels T L, Hammerle L P, Marcovina S M, Lernmark A. A novel monoclonal antibody specific for the N-terminal end of GAD65.  J Neuroimmunol. 2001;  113 63-71
  • 16 Izard M E, Boniface G R, Hardiman K L, Brechbiel M W, Gansow O A, Walkers K Z. An improved method for labeling monoclonal antibodies with samarium-153: use of the bifunctional chelate 2-(p-isothiocyanatobenzyl)-6- methyldiethylenetriaminepentaacetic acid.  Bioconjug Chem. 1992;  3 346-350
  • 17 Kabat E A, Wu T T, Perry H M, Gottesman K, Foeller C. Sequences of Proteins of Immunological Interest. Washington, DC; Services US DoHaH 1991
  • 18 Konidaris C, Simonson W, Michelsen B, Papadopoulos G K. Specific monoclonal antibodies against the surface of rat islet beta cells.  Cell Biol Int. 2002;  26 817-828
  • 19 Logsdon C D, Moessner J, Williams J A, Goldfine I D. Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells.  J Cell Biol. 1985;  100 1200-1208
  • 20 Malaisse W J. On the track to the beta-cell.  Diabetologia. 2001;  44 393-406
  • 21 Milenic D E, Yokota T, Filpula D R, Finkelman M A, Dodd S W, Wood J F, Whitlow M, Snoy P, Schlom J. Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49.  Cancer Res. 1991;  51 6363-6371
  • 22 Moore A, Bonner-Weir S, Weissleder R. Noninvasive in vivo measurement of beta-cell mass in mouse model of diabetes.  Diabetes. 2001;  50 2231-2236
  • 23 Mossner J, Logsdon C D, Williams J A, Goldfine I D. Insulin, via its own receptor, regulates growth and amylase synthesis in pancreatic acinar AR42J cells.  Diabetes. 1985;  34 891-897
  • 24 Neidhardt F C, Bloch P L, Smith D F. Culture medium for enterobacteria.  J Bacteriol. 1974;  119 736-747
  • 25 Padoa C J, Banga J P, Madec A M, Ziegler M, Schlosser M, Ortqvist E, Kockum I, Palmer J, Rolandsson O, Binder K A, Foote J, Luo D, Hampe C S. Recombinant Fabs of human monoclonal antibodies specific to the middle epitope of GAD65 inhibit type 1 diabetes-specific GAD65Abs.  Diabetes. 2003;  52 2689-2695
  • 26 Sweet I R, Cook D L, Lernmark A, Greenbaum C J, Krohn K A. Non-invasive imaging of beta cell mass: a quantitative analysis.  Diabetes Technol Ther. 2004 b;  6 652-659
  • 27 Sweet I R, Cook D L, Lernmark A, Greenbaum C J, Wallen A R, Marcum E S, Stekhova S A, Krohn K A. Systematic screening of potential beta-cell imaging agents.  Biochem Biophys Res Commun. 2004 a;  314 976-983
  • 28 Viti F, Tarli L, Giovannoni L, Zardi L, Neri D. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis.  Cancer Res. 1999;  59 347-352
  • 29 Yokota T, Milenic D E, Whitlow M, Wood J F, Hubert S L, Schlom J. Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms.  Cancer Res. 1993;  53 3776-3783
  • 30 Ziegler B, Lucke S, Kohler E, Hehmke B, Schlosser M, Witt S, Besch W, Ziegler M. Monoclonal antibody-mediated cytotoxicity against rat beta cells detected in vitro does not cause beta-cell destruction in vivo.  Diabetologia. 1992;  35 608-613

Ian R. Sweet

University of Washington

1959 Pacific Street NE

K-165 Health Sciences Building

Seattle, WA 98195

USA

Phone: + 2066854775

Fax: + 20 65 43 31 69

Email: isweet@u.washington.edu