Subscribe to RSS
DOI: 10.1055/s-2005-862386
Synthesis of Polycyclic Lactams and Sultams by a Cascade Ring-Closure Metathesis/Isomerization and Subsequent Radical Cyclization
Publication History
Publication Date:
22 February 2005 (online)
Abstract
Starting from readily available substrates, a new one-pot procedure has been devised to prepare polycyclic lactams and sultams. 2-Pyrrolines obtained from N,N-bisallylamides by ring-closure metathesis and subsequent isomerization promoted by ruthenium hydride complexes can undergo radical cyclization to furnish polycyclic lactams in good yields. The process was successfully conducted on bisallylsulfonamides to give the corresponding sultams.
Key words
polycyclic lactams - 2-pyrrolines - ring-closure metathesis
- 1
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 - 2
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 - 3
Schrock RR.Hoveyda AH. Angew. Chem. Int. Ed. 2003, 42: 4592 - 4
Poulsen CS.Madsen R. Synthesis 2003, 1 - 5
Diver ST.Giessert AJ. Chem. Rev. 2004, 104: 1317 - 6
McReynolds MD.Dougherty JM.Hanson PR. Chem. Rev. 2004, 104: 2239 - 7
Rivard M.Blechert S. Eur. J. Org. Chem. 2003, 2225 -
8a
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 -
8b
Felpin F.-X.Lebreton J. Eur. J. Org. Chem. 2003, 3693 -
8c
Ono K.Nagata T.Nishida A. Synlett 2003, 1207 -
8d
Humphries ME.Murphy J.Phillips AJ.Abell AD. J. Org. Chem. 2003, 68: 2432 -
8e
Habib-Zahmani H.Hacini S.Charonnet E.Rodriguez J. Synlett 2002, 1827 -
8f
Grossmith CE.Senia F.Wagner J. Synlett 1999, 1660 -
8g
Diedrichs N.Westermann B. Synlett 1999, 1127 -
8h
Irie O.Samizu K.Henry JR.Weinreb SM. J. Org. Chem. 1999, 64: 587 -
9a
Jun JH.Dougherty JM.del Sol Jimenez M.Hanson PR. Tetrahedron 2003, 59: 8901 -
9b
Karsch S.Freitag D.Schwab P.Metz P. Synthesis 2004, 1696 -
10a
Grigg R.Sridharan V.York M. Tetrahedron Lett. 1998, 39: 4139 -
10b
Grigg R.York M. Tetrahedron Lett. 2000, 41: 7255 -
10c
Evans P.McCabe T.Morgan BS.Reau S. Org. Lett. 2005, 7: 43 -
11a
Bressy C.Piva O. Synlett 2003, 87 -
11b
Virolleaud MA.Bressy C.Piva O. Tetrahedron Lett. 2003, 44: 8081 -
11c
Virolleaud MA.Piva O. Synlett 2004, 2087 -
12a
Clive DLJ.Cheng H. Chem. Commun. 2001, 605 -
12b
Quayle P.Fengas D.Richards S. Synlett 2003, 1797 - 13
Alcaide B.Almendros P. Chem.-Eur. J. 2003, 9: 1258 ; and references therein - 14
Sutton AE.Seigal BA.Finnegan DF.Snapper ML. J. Am. Chem. Soc. 2002, 124: 13390 -
15a
Schmidt B. Eur. J. Org. Chem. 2003, 816 -
15b
Schmidt B. Chem. Commun. 2004, 742 -
15c
Schmidt B. Eur. J. Org. Chem. 2004, 1865 -
15d
Schmidt B. J. Org. Chem. 2004, 69: 7672 - 17
Rigby JH.Cavezza A.Heeg MJ. J. Am. Chem. Soc. 1998, 120: 3664 - 18
Meyers AI.Flisak JR.Aitken RA. J. Am. Chem. Soc. 1987, 109: 5446 - 19
Brown E.Robin J.-P.Dhal R. Tetrahedron 1982, 38: 2569 - 20
Selvamurugan V.Aidhen IS. Synthesis 2001, 2239 -
22a
Kinderman SS.van Maarseveen JH.Schoemaker HE.Hiemstra H.Rutjes FPJT. Org. Lett. 2001, 3: 2045 -
22b
Katz JD.Overman LE. Tetrahedron 2004, 60: 9559 -
23a
Renaud P.Sibi MP. Radicals in Organic Synthesis Vol. 1: Wiley VCH; Weinheim: 2001. -
23b
Renaud P.Sibi MP. Radicals in Organic Synthesis Vol. 2: Wiley VCH; Weinheim: 2001. -
24a
Kamimura A.Taguchi Y.Omata Y.Hagihara M. J. Org. Chem. 2003, 68: 4996 -
24b
Zhang W.Pugh G. Tetrahedron 2003, 59: 3009 -
24c
Kato I.Higashimoto M.Tamura O.Ishibashi H. J. Org. Chem. 2003, 68: 7983 -
25a
Stork G.Sher PM. J. Am. Chem. Soc. 1986, 108: 303 -
25b
Majumdar KC.Mukhopadhyay PP. Synthesis 2003, 97 -
26a
Chatgilialoglu C. Acc. Chem. Res. 1992, 25: 188 -
26b
Bennasar M.-L.Zulaica E.Juan C.Alonso Y.Bosch J. J. Org. Chem. 2002, 67: 7465 -
28a
Xu Z.Johannes CW.Houri AF.La DS.Cogan DA.Hofilena GE.Hoveyda AH. J. Am. Chem. Soc. 1997, 119: 10302 -
28b
Fürstner A.Thiel OR.Ackermann L. Org. Lett. 2001, 3: 449 -
28c
Fürstner A.Ackermann L.Gabor B.Goddard R.Lehmann CW.Mynott R.Stelzer F.Thiel OR. Chem.-Eur. J. 2001, 7: 3236 -
29a
Denmark SE.Thoraransen A. Chem. Rev. 1996, 96: 137 -
29b
Nicolaou KC.Montagnon T.Snyder SA. Chem. Commun. 2003, 551
References
Preparation of the N
,
N
-Bisallylamides 2.
To a solution of acid (2 mmol) in CH2Cl2 (4 mL) were successively added DMAP (0.073 g, 0.6 mmol) and bisallylamine (0.195 g, 2 mmol). The reaction was next cooled to 0 °C and a solution of dicyclohexylcarbodiimide (0.412 g, 2 mmol) in the same solvent (1 mL) was added dropwise. After stirring 10 min at 0 °C, the ice-water bath was removed and the mixture stirred overnight at r.t. Urea was filtered off and the solvent removed by concentration under vacuo. Amide 2 was obtained pure by flash chromatography (eluent: EtOAc-hexanes 10:90).
Compound 2a (95%): 1H NMR (CDCl3): δ = 3.65 (d, J = 4.5 Hz, 2 H), 3.75 (dd, J = 15.2, 6.8 Hz, 1 H), 4.48 (dd, J = 15.2, 3.7 Hz, 1 H), 5.03 (dd, J = 1.3, 16.9 Hz, 1 H), 5.10 (dd, J = 11.5, 1.3 Hz, 1 H), 5.18 (dd, J = 10.1, 1.3 Hz, 1 H), 5.23 (dd, J = 17.9, 1.3 Hz, 1 H), 5.59 (ddt, J = 16.9, 10.1, 5.8 Hz, 1 H), 5.83 (ddt, J = 16.9, 10.1, 5.4 Hz, 1 H), 7.13-7.31 (m, 3 H), 7.50 (d, J = 7.9 Hz, 1 H). 13C NMR (CDCl3): δ = 46.70, 50.60, 118.50, 118.51, 119.50, 127.90, 128.00, 130.60, 132.80, 133.00, 133.20, 138.50, 169.40. IR (film): 3080, 2923, 1637, 1415, 1285, 1115, 995, 925, 770 cm-1.
Compound 2d (63%): 1H NMR (CDCl3): δ = 3.74 (d, J = 5.6 Hz, 2 H), 3.80 (m, 1 H), 4.35-4.55 (m, 1 H), 5.11 (ddt, J = 17.0, 1.5, 1.5 Hz, 1 H), 5.18 (ddt, J = 10.2, 1.5, 1.5 Hz, 1 H), 5.23 (ddt, J = 10.4, 1.5, 1.5 Hz, 1 H), 5.27 (ddt, J = 15.6, 1.5, 1.5 Hz, 1 H), 5.67 (ddt, J = 17.0, 10.4, 5.6 Hz, 1 H), 5.87 (ddt, J = 16.4, 10.2, 6.0 Hz, 1 H), 6.00 (s, 2 H), 6.71 (s, 1 H), 6.98 (s, 1 H). 13C NMR (CDCl3): δ = 46.7, 50.5, 102.4, 107.8, 110.4, 113.1, 118.4, 131.3, 132.6, 133.0, 147.7, 149.1, 168.9. HRMS: m/z calcd [MH+]: 324.02353; found: 324.02315.
To a solution of N-allyl-2-bromobenzene sulphonamide (5a, 276 mg, 1 mmol) in MeCN (4 mL) was added 4-bromo-butene (148 mg, 1.1 mmol) and K2CO3 (553 mg, 4 mmol). The resulting suspension was heated for 16 h. After filtration and concentration, the product was purified by flash chromatography (eluent: EtOAc-hexanes 10:90).
Compound 5c (86%): 1H NMR (CDCl3): δ = 2.27 (t, J = 7.4 Hz, 2 H), 3.36 (t, J = 7.4 Hz, 2 H), 3.99 (d, J = 6.4 Hz, 2 H), 4.95-5.15 (m, 2 H), 5.15-5.35 (m, 2 H), 5.59-5.85 (m, 2 H), 7.37 (dt, J = 1.8, 7.5 Hz, 1 H), 7.45 (dt, J = 1.8, 7.5 Hz, 1 H), 7.75 (dd, J = 7.5, 1.3 Hz, 1 H), 8.18 (dd, J = 8.7, 2.1 Hz, 1 H). 13C NMR (CDCl3): δ = 32.7, 46.6, 50.3, 117.5, 119.3, 120.7, 127.9, 132.5, 133.4, 133.9, 134.8, 136.0, 139.8. IR (film): 3070, 2985, 1640, 1575, 1445, 1340, 1155, 915, 755 cm-1.
Metathesis and Isomerization of Amides 2, Typical Procedure.
To a solution of amide 2a (140 mg, 0.5 mmol) in toluene was added first generation Grubbs’ catalyst (11 mg, 2.5% mol). After stirring at r.t. for 1 h and complete disappearance of the starting material, NaH (7 mg, 1.5 mmol) was added at once and the mixture was heated to reflux. A new addition of both Grubbs’ catalyst (11 mg, 2.5% mol) and NaH (7 mg, 1.5 mmol) was performed after 12 h of heating and this sequence was repeated three times more. After cooling to r.t., the solvent was removed by concentration and the resulting crude mixture was purified by flash chromatography on silica (eluent: hexanes-EtOAc 7:3).
Compound 7a (72%): 1H NMR (CDCl3) 2 rotamers (ratio 4.2:1): δ (major rotamer) = 2.76 (dt, J = 8.6, 2.4 Hz, 2 H), 4.07 (t, J = 9.0 Hz, 2 H), 5.23 (dt, J = 4.3, 2.4 Hz, 1 H), 6.02 (dt, J = 6.4, 1.2 Hz, 1 H), 7.35 (m, 3 H), 7.60 (d, J = 7.5 Hz, 1 H); δ (minor rotamer) = 2.76 (dt, J = 8.6, 2.4 Hz, 2 H), 3.58 (t, J = 9.0 Hz, 2 H), 5.42 (dt, J = 4.3, 2.4 Hz, 1 H), 7.11 (dt, J = 6.4, 2.1 Hz, 1 H), 7.35 (m, 3 H), 7.60 (d, J = 7.5 Hz, 1 H). 13C NMR (CDCl3): δ (major rotamer) = 27.6, 43.8, 111.8, 118.4, 126.7, 127.4, 128.6, 129.7, 131.9, 136.9, 173.4;
δ (minor rotamer) = 28.8, 45.7, 111.8, 117.7, 126.7, 127.4, 128.6, 129.7, 131.9, 137.6, 173.4. IR (film): 3065, 2955, 1645, 1420, 1045, 1025, 830 cm-1. HRMS: m/z calcd [MH+]: 252.00240; found: 252.00229.
Compound 7d (71%): yellow oil. 1H NMR (CDCl3): δ = 2.73 (dt, J = 6.0, 0.8 Hz, 2 H), 4.01 (t, J = 8.3 Hz, 2 H), 5.22 (dt, J = 5.3, 2.6 Hz, 1 H), 6.02 (s, 2 H), 6.06 (dt, J = 4.3, 2.1 Hz, 1 H), 6.80 (s, 1 H), 7.01 (s, 1 H). 13C NMR (CDCl3): δ = 28.9, 45.1, 102.4, 108.2, 108.5, 110.9, 113.0, 113.1, 130.0, 147.7, 149.4, 164.5. HRMS: m/z calcd [MH+]: 294.98441; found: 294.98497.
Radical Cyclization of Amides 7, Typical Procedure Described from Amide 7a.
A solution of amide 7a (100 mg, 0.4 mmol) in toluene (40 mL) containing small amounts of AIBN (7 mg, 0.04 mmol) was bubbled by a dried stream of nitrogen for 10 min and heated to reflux. A solution of tristrimethylsilylsilane (140 µL, 0.44 mmol) in toluene (10 mL) was carefully added drop by drop in 15 min. The reaction was heated for additional 6 h. The solvent was removed by concentration and the crude mixture was purified by flash chromatography on silica (eluent: EtOAc-hexanes 50:50) and gave lactam 10a.
Compound 10a (77%): viscous oil. 1H NMR (CDCl3): δ = 1.25 (m, 2 H), 2.34 (m, 2 H), 3.43 (m, 1 H), 3.72 (dt, J = 11.3, 8.3 Hz, 1 H), 4.68 (dd, J = 10.3, 5.3 Hz, 1 H), 7.45 (m, 3 H), 7.80 (d, J = 7.2 Hz, 1 H). 13C NMR (CDCl3): δ = 28.2, 28.7, 40.9, 63.7, 114.9, 121.7, 122.9, 127.3, 130.6, 145.4, 170.6. IR: 3075, 2960, 1685, 1385, 1220, 1145, 740 cm-1. HRMS: m/z calcd [MH+]: 174.09189; found: 174.09163.
Compound 12c (62%): white solid; mp 103-109 °C. 1H NMR (CDCl3): δ = 1.40-1.85 (m, 4 H), 2.03 (dt, J = 11.3, 3.0 Hz, 1 H), 2.28 (dd, J = 3.0, 11.3 Hz, 1 H), 3.02 (dt, J = 3.2, 11.3 Hz, 1 H), 3.86 (dt, J = 10.2, 2.7 Hz, 1 H), 4.20 (dd, J = 3.2, 11.3 Hz, 1 H), 7.37 (dd, J = 1.1, 7.5 Hz, 1 H), 7.50 (t, J = 7.5 Hz, 1 H), 7.58 (dt, J = 1.1, 7.5 Hz, 1 H), 7.79 (d, J = 7.5 Hz, 1 H). 13C NMR (CDCl3): δ = 23.9, 24.3, 30.5, 40.4, 58.8, 121.4, 123.2, 129.3, 132.8, 135.4, 138.8. IR: 3080, 2955, 2850, 1645, 1450, 1285, 1170, 1130 cm-1. HRMS: m/z calcd [MH+]: 224.07452; found: 224.07453.
Tandem Process from Amides 2a,d, Typical Procedure.
To a solution of amide 2a (140 mg, 0.5 mmol) in toluene was added first generation Grubbs’ catalyst (11 mg, 2.5% mol). After stirring at r.t. for 1 h and complete disappearance of the starting material, NaH (7 mg, 1.5 mmol) was added at once and the mixture was heated to reflux. A new addition of both Grubbs’ catalyst (11 mg, 2.5% mol) and NaH (7 mg, 1.5 mmol) was performed after 12 h of heating and this sequence was repeated three times more. After cooling to r.t., AIBN (8 mg, 0.05 mmol) was added. The mixture was bubbled with a dried nitrogen stream and next heated. A solution of TTMSS (320 µL, 1 mmol) in toluene (10 mL) containing AIBN (8 mg, 0.05 mmol) was slowly added to the reaction mixture in 10 min. After heating at 130 °C for 6 h, the mixture was cooled to r.t., and the solvent removed by concentration under vacuum. The products were purified after flash chromatography on silica.