References
-
1a
Joule JA. In Science of Synthesis
Vol. 10:
Thomas EJ.
Thieme;
Stuttgart:
2000.
p.361-652
-
1b
Gribble GW.
J. Chem. Soc., Perkin Trans. 1
2000,
1045
-
1c
Lounasmaa M.
Tolvanen A.
Nat. Prod. Rep.
2000,
17:
75
-
2a
Sezen B.
Sames D.
J. Am. Chem. Soc.
2003,
125:
5274
-
2b
Beccalli EM.
Broggini G.
Tetrahedron Lett.
2003,
44:
1919
- 3
Wang S.-Y.
Ji S.-J.
Loh T.-P.
Synlett
2003,
2377
-
4a
Agnusdei M.
Bandini M.
Melloni A.
Umani-Ronchi A.
J. Org. Chem.
2003,
68:
7126
-
4b
Bandini M.
Fagioli M.
Melchiorre P.
Melloni A.
Umani-Ronchi A.
Tetrahedron Lett.
2003,
44:
5843
-
4c
Jørgensen KA.
Synthesis
2003,
1117
-
4d
Yadav JS.
Reddy BVS.
Satheesh G.
Tetrahedron Lett.
2003,
44:
8331
-
4e
Evans DA.
Scheidt KA.
Fandrik KR.
Wai Lam H.
Wu J.
J. Am. Chem. Soc.
2003,
125:
10780
-
4f
Bandini M.
Fagioli M.
Melloni A.
Umani-Ronchi A.
Synthesis
2003,
397
-
4g
Bandini M.
Cozzi PG.
Giacobini M.
Melchiorre P.
Selva S.
Umani-Ronchi A.
J. Org. Chem.
2002,
67:
3700
-
4h
Yadav JS.
Reddy BVS.
Abraham S.
Sabitha G.
Synlett
2002,
1550
-
4i
Harrington PE.
Kerr MA.
Synlett
1996,
1047
-
5a
Bartoli G.
Bertolacci M.
Bosco M.
Foglia G.
Giuliani A.
Marcantoni E.
Sembri L.
Torregiani E.
J. Org. Chem.
2003,
68:
4594
-
5b
Ji SH.
Wang S.-Y.
Synlett
2003,
2074
-
5c
Ji SH.
Zhou M.-F.
Gu D.-G.
Wang S.-Y.
Loh T.-P.
Synlett
2003,
2077
-
5d
Reddy AV.
Ravinder K.
Goud TV.
Krishnaiah P.
Raju TV.
Venkateswarlu Y.
Tetrahedron Lett.
2003,
44:
6257
-
5e
Alam MM.
Varala R.
Adapa SR.
Tetrahedron Lett.
2003,
44:
5115
- 6 For a recent review on gold catalysis, see: Dyker G.
Angew. Chem. Int. Ed.
2000,
39:
4237
-
7a
Casado R.
Contel M.
Laguna M.
Romero P.
Sanz S.
J. Am. Chem. Soc.
2003,
125:
11925
-
7b
Dyker G.
Hildebrandt D.
Liu J.
Merz K.
Angew. Chem. Int. Ed.
2003,
42:
4399
-
7c
Asao N.
Nogami T.
Lee S.
Yamamoto Y.
J. Am. Chem. Soc.
2003,
125:
10921
-
7d
Hashmi AS.
Ding L.
Bats JW.
Fischer P.
Frey W.
Chem.-Eur. J.
2003,
9:
4339
-
7e
Mizushima E.
Hayashi T.
Tanaka M.
Org. Lett.
2003,
5:
3349
-
7f
Abbiati G.
Arcadi A.
Bianchi G.
Di Giuseppe S.
Marinelli F.
Rossi E.
J. Org. Chem.
2003,
68:
6959
-
7g
Arcadi A.
Bianchi G.
Di Giuseppe G.
Marinelli F.
Green Chem.
2003,
5:
64
-
7h
Arcadi A.
Chiarini M.
Di Giuseppe S.
Marinelli F.
Synlett
2003,
203
-
7i
Krause N.
Hoffmann-Röder A.
Canisius J.
Synthesis
2002,
1759
-
7j
Arcadi A.
Di Giuseppe S.
Marinelli F.
Rossi E.
Tetrahedron: Asymmetry
2001,
12:
2715
-
7k
Arcadi A.
Di Giuseppe S.
Marinelli F.
Rossi E.
Adv. Synth. Catal.
2001,
343:
443
-
7l
Dankwardt JW.
Tetrahedron Lett.
2001,
42:
5809
- 8
Wei C.
Li C.-J.
J. Am. Chem. Soc.
2003,
125:
9584
- 9
Fuchita Y.
Utsunomiya Y.
Yasutake M.
J. Chem. Soc., Dalton Trans.
2001,
2330
- 10
Zamora F.
Zangrado E.
Furlan M.
Randaccio L.
Lippert B.
J. Organomet. Chem.
1998,
552:
127
- 11
Zamora F.
Amo-Ochoa P.
Fischer B.
Scimanski A.
Lippert B.
Angew. Chem. Int. Ed.
1999,
38:
2274
- 12
Reetz MT.
Sommer K.
Eur. J. Org. Chem.
2003,
3485
- 13
Hasmi ASK.
Schwarz L.
Choi J.-H.
Frost TM.
Angew. Chem. Int. Ed.
2000,
39:
2285
- 14 Formation of 3-indolylaurate species by aminoauration of 2-alkynylanilines was suggested by: Iritani K.
Matsubara S.
Utimoto K.
Tetrahedron Lett.
1988,
29:
1799
- 15
Dyker G.
Muth E.
Hashmi ASK.
Ding L.
Adv. Synth. Catal.
2003,
345:
1247
- 18
Sundberg RJ. In Indoles
Academic Press;
London:
1996.
- 20
Srivastava N.
Banik BK.
J. Org. Chem.
2003,
68:
2109
- 21
Kobayashi S.
Kakumoto K.
Sugiura M.
Org. Lett.
2002,
4:
1319
-
24a
Itahara T.
Kawasaki K.
Ouseto F.
Synthesis
1984,
236
-
24b
Itahara T.
Ikeda M.
Sakakibara T.
J. Chem. Soc., Perkin Trans. 1
1983,
1361
- 25
Baker RT.
Nguyen P.
Marder TB.
Westcott SA.
Angew Chem., Int. Ed. Engl.
1995,
34:
1336
-
26a
Snider BB.
Zeng H.
J. Org. Chem.
2003,
68:
545
-
26b
Abbiati G.
Beccalli EM.
Broggini G.
Zoni C.
J. Org. Chem.
2003,
68:
7625
16
General Procedure for the Synthesis of Indoles 3. To a 1:1 mol ratio solution of indole 1 and α,β-enone 2 in EtOH was added NaAuCl4·2H2O (5 mol%). The resulting mixture was allotted to react under stirring at r.t. or at 30 °C and the reaction was monitored by TLC or GC-MS. After completion, the solvent was removed by evaporation. To the residue, acetone (few mL) was added to precipitate the catalyst, which was separated by filtration. The filtrate was concentrated and the crude products were purified by chromatography on silica gel (230-400 mesh) eluting with n-hexane/EtOAc mixtures.
17 Selected data for 3b: IR (neat): 3420, 1725 cm-1. 1H NMR: δ = 8.25 (bs, 1 H), 7.64-7.60 (m, 1 H), 7.24-7.03 (m, 3 H), 6.80 (d, J = 2.3 Hz, 1 H), 3.47-3.40 (m, 1 H), 2.84-2.76 (m, 2 H), 1.95 (s, 3 H), 1.73-1.63 (m, 2 H), 1.25-1.15 (m, 4 H), 0.77 (t, J = 3.9 Hz, 3 H). 13C NMR: δ = 209.51, 136.39, 126.34, 121.55, 121.26, 119.02, 118.86, 118.38, 111.31, 50.07, 35.49, 32.73, 30.24, 29.63, 22.51, 13.89. MS: m/e (relative intensity) = 244 (100) [M + 1]+, 243 (35) [M+], 186 (63). 3c: IR (KBr): 3430, 1715 cm-1. 1H NMR (diastereomeric mixture, 2:1 ratio): δ = 7.80 (bs, 2 H), 7.39-7.03 (m, 18 H), 6.73 (bs, 2 H), 4.82 (t, J = 7.4 Hz, 2 H), 3.24 (dd, J = 16.3 and 7.4 Hz, 2 H), 3.09 (dd, J = 16.3 and 7.4 Hz, 2 H);(diastereoisomer) δ = 7.78 (bs, 2 H), 7.32-7.00 (m, 18 H), 6.69 (bs, 2 H), 4.82 (t, J = 7.4 Hz, 2 H), 3.19 (dd, J = 16.3 and 7.5 Hz, 2 H), 3.09 (dd, J = 16.3 and 7.5 Hz, 2 H). 13C NMR (diastereomeric mixture, 2:1 ratio): δ = 207.79, 143.97 136.65, 128.37, 127.66, 126.59, 126.19, 122.11, 121.62, 119.54, 119.45, 118.85, 111.09, 49.77, 38.12; (diastereoisomer) δ = 207.70, 144.15, 136.62, 128.43, 127.77, 126.64, 126.26, 122.11, 121.49, 119.50, 119.40, 118.78, 111.05, 49.90, 38.18. ESI-MS: m/e (relative intensity) = 469 (100) [M + 1+]. 3e: IR (KBr): 3360, 1720 cm-1. 1H NMR: δ = 8.28 (bs, 1 H), 7.44 (s, 1 H), 7.17 (s, 1 H), 7.04 (s, 1 H), 2.96 (t, J = 7.2 Hz, 2 H), 2.79 (t, J = 7.2 Hz, 2 H), 2.13 (s, 3 H). 13C NMR: δ = 208.03, 135.59, 132.11, 129.09, 123.61, 121.49, 116.21, 117.06, 43.73, 29.99, 19.07. MS: m/e (relative intensity) = 259 (10) [M+], 257 (63) [M+], 256 (63) [M + 1]+, 255 (100) [M+], 214 (34), 213 (49), 212 (19), 200(83), 199 (100), 198 (39). 3f: IR (KBr): 3400, 1710 cm-1. 1H NMR: δ = 8.20 (bs, 1 H), 7.57-7.14 (m, 9 H), 3.19-3.11 (m, 2 H), 2.79-2.71 (m, 2 H), 2.05 (s, 3 H). 13C NMR: δ = 208.93, 135.86, 134.44, 132.97, 128.86, 128.66, 127.89, 127.68, 122.27, 119.59, 118.82, 111.55, 110.97, 44.45, 29.90, 18.70. MS: m/e (relative intensity) = 264 (63) [M + 1]+, 207 (100). 3g: IR (KBr): 3360, 1710 cm-1. 1H NMR: δ = 8.15 (s, 1 H), 7.62-7.10 (m, 14 H), 5.09 (t, J = 7.4 Hz, 1 H), 3.46 (dd, J = 16.4 and 7.4 Hz, 1 H), 3.37 (dd, J = 16.4 and 7.4 Hz, 1 H), 1.97 (s, 3 H). 13C NMR: δ = 207.51, 144.45, 136.28, 135.73, 132.98, 128.81, 128.76, 128.43, 128.14, 127.70, 127.48, 126.05, 122.08, 120.61, 119.76, 114.03, 111.21, 49.31, 37.09, 30.31. MS: m/e (relative intensity) = 339 (23) [M+], 283 (100). 3h: IR (KBr): 3300, 1690 cm-1. 1H NMR: δ = 8.14 (s, 1 H), 7.84 (d, J = 7.9 Hz, 1 H), 7.50-7.46 (m, 4 H), 7.44-7.40 (m, 2 H), 7.24 (t, J = 7.9 Hz, 1 H), 7.17 (t, J = 7.6 Hz, 1 H), 3.46-3.40 (tt, J = 12.9 and 4.1 Hz, 1 H), 3.14 (t, J = 13.6 Hz, 2 H), 2.62-2.45 (m, 2 H), 2.21-1.66 (m, 4 H). 13C NMR: δ = 211.33, 136.29, 134.52, 132.97, 128.88, 128.75, 128.16, 126.94, 122.13, 120.10, 119.55, 115.11, 111.38, 48.11, 41.39, 37.14, 31.70, 25.87. MS: m/e (relative intensity) = 289 (100) [M+], 246 (49), 232 (74), 218 (58). 3i: IR (neat): 3360, 1715 cm-1. 1H NMR: δ = 8.25 (bs, 1 H), 7.57-7.10 (m, 7 H), 3.26-3.18 (m, 2 H), 2.83-275 (m, 2 H), 2.12 (s, 3 H). 13C NMR: δ = 207.45, 139.58, 132.00, 131.34, 130.88, 130.01, 128.72, 128.52, 127.89, 127.73, 126.25, 122.49, 120.59, 37.33, 32.91, 29.80. MS: m/e (relative intensity) = 269 (63) [M+], 213 (100). 3j: IR (KBr): 3400, 1710 cm-1. 1H NMR: δ = 8.13 (bs, 1 H), 7.52-7.06 (m, 9 H), 6.04 (bs, 1 H), 3.15-3.07 (m, 2 H), 2.80-2.72 (m, 2 H), 2.50-1.95 (m, 7 H), 2.13 (s, 3 H). 13C NMR: δ = 209.09, 146.37, 135.97, 135.13, 129.82, 128.65, 128.44, 127.15, 126.82, 126.19, 121.83, 119.30, 118.38, 110.63, 110.51, 44.79, 39.42, 33.67, 30.02, 29.83, 28.74, 19.10. MS: m/e (relative intensity) = 343 (100) [M+], 286 (86). 3k: IR (neat): 3440, 1730 cm-1. 1H NMR: δ = 7.92 (bs, 1 H), 7.46-7.01 (m, 14 H), 6.02 (bs, 1 H), 5.08-5.05 (m, 1 H), 3.43-3.36 (m, 2 H), 2.62-2.46 (m, 1 H), 2.16-2.08 (m, 4 H), 2.06 (s, 3 H), 2.04-1.96 (m, 2 H). MS: m/e (relative intensity) = 419 (38) [M+], 362 (100). 3l: IR (neat): 3380, 1680 cm-1. 1H NMR: δ = 7.92 (d, J = 7.9 Hz, 1 H), 7.54-7.04 (m, 14 H), 5.17 (t, J = 7.3 Hz, 1 H), 4.01 (dd, J = 16.7 and 6.9 Hz, 1 H), 3.93 (dd, J = 16.7 and 6.9 Hz, 1 H), 2.87-2.75 (m, 2 H), 1.62-1.58 (m, 2 H), 1.39-1.36 (m, 2 H), 0.92 (t, J = 7.3 Hz, 3 H). 13C NMR: δ = 199.08, 144.26, 137.09, 136.34, 135.54, 132.84, 128.41, 128.18, 128.01, 127.47, 125.78, 120.70, 119.36, 119.08, 113.27, 110.50, 43.84, 36.59, 31.83, 26.02, 22.52, 13.82. EI-MS: m/e (relative intensity) = 381 (30) [M+], 263 (100).
19 Temperatures are reported as bath temperature.
22
Sequential Procedure for the Preparation of 5a. To a solution of the indole 1a (0.072 g, 0.612 mmol) and the trans,trans-dibenzylidene acetone 2c (0.287 g, 1.22 mmol) in EtOH (3 mL) was added NaAuCl4·2H2O (0.012 g, 0.0306 mmol). The resulting mixture was allotted to react under stirring at 30 °C. After 2 h, the temperature was raised at 60 °C and the heating was continued for 3 h after which the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography eluting with n-hexane/EtOAc 90/10 v/v mixture to afford 4a (0.17 g, 80% yield). IR (KBr): 3440, 1720 cm-1. 1H NMR (diastereomeric mixture, 2.1:1 ratio): major isomer: δ = 7.56 (bs, NH, 1 H), 7.50-6.90 (m, Csp2-H, 14 H), 4.82 (t, J = 4.5 Hz, 10-CH, 1 H), 4.54 (dd, J = 2.3 and 12.1 Hz, 6-CH, 1 H), 3.40 (d, J = 4.5 Hz, 9-CH, 2 H), 3.21 (dd, J = 12.1 and 15.5 Hz, 7-CH
a
, 1 H) 2.73 (dd, J = 2.3 and 15.5 Hz, 7-CH
b
, 1 H); minor isomer: δ = 7.68 (bs, NH, 1 H), 7.50-6.90 (m, Csp2-H, 14 H), 4.86 (dd, X part of ABX system, 6-CH, 1 H), 4.78 (dd, J = 4.5 and 7.9 Hz, 10-CH, 1 H), 3.47 (dd, J = 8.3 and 14.0 Hz, 9-CH
a
, 1 H), 3.08 (dd, J = 4.5 and 14.4 Hz, 9-CH
b
, 1 H), 3.18-3.09 (m, AB part of ABX system 7-CH, 2 H). 13C NMR: (diastereomeric mixture, 2.1:1 ratio): major isomer: δ = 209.97 (8-CO), 143.43 (1-CPha), 141.78 (1-CPhb), 136.57 (5a-C), 134.88 (4a-C), 129.26, 128.62 (10b-C), 128.60, 128.05, 127.71, 127.42, 126.45 (Pha and Phb), 122.13 (3-C), 119.71 (2-C), 118.63 (1-C), 113.65 (10a-C), 110.53 (4-C), 50.37 (7-C), 49.08 (9-C), 41.13 (6-C), 36.42 (10-C); minor isomer: δ = 209.43 (8-CO), 143.66 (1-CPha), 140.01 (1-CPhb), 136.04 (5a-C), 134.76 (4a-C), 129.19, 128.47 (10b-C), 128.18, 128.05, 127.45, 126.49 (Pha and Phb), 121.97 (3-C), 119.65 (2-C), 118.65 (1-C), 112.86 (10a-C), 110.53 (4-C), 50.06 (4-C), 49.93 (7-C), 41.02 (6-C), 38.63 (10-C). MS: m/e (relative intensity) = 351 (100) [M+], 219 (47).
23 Selected data for 5b: IR (neat): 3400, 1710 cm-1. 1H NMR: δ = 8.19 (bs, 1 H), 7.52-7.47 (m, 1 H), 7.28-7.24 (m, 1 H), 7.17-7.05 (m, 2 H), 3.30-3.25 (m, 1 H), 2.52-2.28 (m, 4 H), 2.21 (s, 3 H), 2.13-1.73 (m, 4 H). 13C NMR: δ = 210.85, 136.03, 135.11, 129.01, 121.28, 119.08, 118.25, 110.43, 106.25, 47.09, 41.07, 36.34, 30.77, 25.33, 8.37. MS: m/e (relative intensity) = 227 (100) [M+]. 5c: IR (neat): 3390, 1710 cm-1. 1H NMR: δ = 8.39 (bs, 1 H), 7.57-7.09 (m, 8 H), 3.85 (s, 3 H), 3.55-3.35 (m, 1 H), 2.63-2.58 (m, 2 H), 2.41-2.16 (m, 2 H), 2.05-1.98 (m, 4 H). 13C NMR: δ = 210.28, 158.21, 136.53, 135.20, 130.77, 128.03, 127.01, 121.98, 119.98, 119.20, 114.13, 113.86, 110.64, 55.29, 47.76, 41.10, 36.26, 31.72, 25.23. MS: m/e (relative intensity) = 319 (100) [M+].