Subscribe to RSS
DOI: 10.1055/s-2003-42096
Practical and User-Friendly Procedure for Michael Reactions of α-Nitroketones in Water
Publication History
Publication Date:
15 October 2003 (online)
Abstract
A variety of α,β-unsaturated carbonyl derivatives gave selective Michael additions with several α-nitrocycloalkanones in water, at room temperature without any added catalyst, or in very dilute, aqueous solutions of potassium carbonate. Both preparative methods constitute new, environmentally benign and more efficient alternatives to previous procedures.
Key words
Michael additions - carbanions - nucleophillic additions - nitroketones - organic reactions in water
-
1a
Li C.-J. Chem. Rev. 1993, 93: 2023 -
1b
Chan TH.Li C.-J. Can. J. Chem. 1994, 72: 1181 -
1c
Lubineau A.Augé J.Queneau Y. Synthesis 1994, 741 -
1d
Li C.-J.Chan TH. Organic Reactions in Aqueous Media Wiley; New York: 1997. -
1e
Organic Synthesis in Water
Grieco PA. Blacky Academic and Professional; London: 1998. -
1f
Lubineau A.Augé J. Topics in Current Chemistry, In Modern Solvents in Organic Synthesis Vol. 206:Knochel P. Springer-Verlag; Berlin, Heidelberg: 1999. p.1 - 2
Ribe S.Wipf P. Chem. Commun. 2001, 299 - 3
Ludwig R. Angew. Chem. Int. Ed. 2001, 40: 1808 - 4
Keller E.Feringa BL. Synlett 1997, 842 - 5
Mori Y.Kakumoto K.Manabe K.Kobayashi S. Tetrahedron Lett. 2000, 41: 3107 - 6
Shibatomi K.Nakahashi T.Uozomi Y. Synlett 2000, 1643 - 7
Bensa D.Brunel J.-M.Buono G.Rodriguez J. Synlett 2001, 715 - 8
Fischer RH.Witz HM. Synthesis 1980, 261 - 9 For a review, see:
Ballini R. Synlett 1999, 1009 -
10a
Rosini G.Ballini R.Marotta E. Tetrahedron 1989, 45: 5935 -
10b
Ballini R.Petrini M.Rosini G. Tetrahedron 1990, 46: 7531 - 11
Ballini R.Bosica G.Marcantoni E.Vita P.Bartoli G. J. Org. Chem. 2000, 65: 5845 - 12
Barrett AGM.Spilling CD. Tetrahedron Lett. 1988, 29: 5733 -
13a
Bergman ED.Ginsburg D.Pappo R. Org. React. 1959, 10: 1795 -
13b
Jung ME.Semmelhack MF. Comprehensive Organic Synthesis Vol. 4:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.1-67 -
14a
Ballini R.Papa F.Abate C. Eur. J. Org. Chem. 1999, 87 -
14b
Ballini R.Barboni L.Bosica G. J. Org. Chem. 2000, 65: 6261 -
14c
Ballini R.Barboni L.Bosica G.Filippone P.Peretti S. Tetrahedron 2000, 56: 4095 -
15a
Cookson RC.Ray PS. Tetrahedron Lett. 1982, 23: 3521 -
15b
Yurdakul A.Gurtner C.Jung E.-S.Lorenzi-Riatsch A.Linden A.Guggisberg A.Bienz S.Hesse M. Helv. Chim. Acta 1998, 81: 1373 -
15c
Ballini R.Barboni L.Bosica L.Fiorini D. Synthesis 2002, 2725 -
16a
Rosini G.Ballini R.Marotta E. Tetrahedron 1989, 45: 5935 -
16b
Ballini R.Petrini M.Rosini G. Tetrahedron 1990, 46: 7531 - 17
Rosini G.Marotta E. Synthesis 1986, 237 - 19 For a review of MDR inhibitors, see:
Avendaño C.Menéndez JC. Curr. Med. Chem. 2002, 9: 159 -
20a
Smith CD.Zilfou JT.Stratmann K.Patterson GML.Moore RE. Mol. Pharmacol. 1995, 47: 241 -
20b
Stratmann K.Moore RE.Bonjouklian R.Deeter JB.Patterson GML.Shaffer S.Smith CD.Smitka TA. J. Am. Chem. Soc. 1994, 116: 9935 -
20c
Zhang X.Smith CD. Mol. Pharmacol. 1996, 49: 288 -
21a
Bassetti M.Cerichelli G.Floris B. Gazz. Chim. Ital. 1991, 121: 527 -
21b
The rationalization given in this reference for the formation of 4 differs from the one proposed in Scheme [1] .
- 22 For a similar effect with 1,3-diones, see:
Crispin DJ.Vanstone AE.Whitehurst JS. J. Chem. Soc. C 1970, 10 -
24a
Ballini R.Bosica G. Tetrahedron Lett. 1996, 44: 8027 -
24b
Ballini R.Bosica G. Eur. J. Org. Chem. 1998, 355 - 25
Ballini R.Bosica G. J. Org. Chem. 1997, 62: 425
References
These starting materials were prepared in two steps, by transformation of commercially available cycloalkanones into the enol acetates and subsequent treatment of the latter compounds with acetyl nitrate.
Representative Procedure: To a solution of cyclo-heptanone (10 g, 90 mmol) in isopropenyl acetate (85 mL) was added p-toluenesulfonic acid (2.9 g, 15 mmol). The reacting mixture was refluxed for 24 h in an oil bath at 100 °C, and then it was cooled and diluted with Et2O
(20 mL). The solution was washed with sat. aq NaHCO3 (2 × 30 mL) and brine (2 × 30 mL). The organic layer was dried (Na2SO4) and evaporated, yielding 1-cycloheptenyl acetate (14.08 g, 100%), as a dark brown oil. To a solution of this compound in CH2Cl2 (30 mL) at 0 °C was successively added acetic anhydride (28.26 mL, 30.55 g, 295.7 mmol) and 96% sulfuric acid (0.5 mL). A mixture of glacial acetic acid (2.25 mL, 2.39 g, 40.8 mmol) and 65% nitric acid (6.75 mL) was then added dropwise. After stirring for an additional time of 3 h, the reacting mixture was diluted with CH2Cl2 (30 mL) and washed with brine (2 × 20 mL), and sat. aq NaHCO3 (3 × 20 mL, until no effervescence was observed). The organic layer was dried (Na2SO4) and evaporated and the residue was chromato-graphed on silica gel, eluting with 10:1 petroleum ether-ethyl acetate, yielding 7.482 g (54%) of compound 2a, as a pale yellow viscous oil. IR (NaCl): 1721 (C=O), 1158 and 1375 (NO2) cm-1. 1H NMR (250 MHz, CDCl3): δ = 5.34 (dd, 1 H, J = 9.5 and 3.9 Hz, H-2), 2.80-2.50 (m, 2 H, H-7), 2.40-2.20 (m,
1 H, H-3), 2.20-2.00 (m, 2 H, H-5,3), 2.00-1.75 (m, 2 H,
H-6,4), 1.75-1.50 (m, 2 H, H-6,4), 1.50-1.25 (m, 1 H, H-5). 13C NMR (63 MHz, CDCl3): δ = 201.7 (C-1), 94.1 (C-2), 41.7 (C-7), 29.1 (C-5), 29.0 (C-3), 26.6 (C-4), 24.2 (C-6). Anal. Calcd. for C7H11NO3 (M = 157): C, 53.50; H, 7.00; N, 8.92. Found: C, 53.37; H, 7.06; N, 8.85.
Representative Procedure: To a vigorously stirred dispersion of α-nitrocycloheptanone 2a (150 mg, 0.96 mmol) in H2O (5 mL) was added acrolein (2.4 mmol, 2.5 equiv). The mixture was stirred at r.t. for 8 h, and the aqueous phase was then extracted with Et2O (3 × 10 mL), which was dried (Na2SO4) and evaporated, yielding 172 mg (85%) of 3-(1′-nitro-2′-oxocycloheptyl)-propanal (3a), as a pale yellow, viscous liquid. IR (NaCl): 1721 (C=O), 1542 and 1347 (NO2) cm-1. 1H NMR (250 MHz, CDCl3): δ = 9.77 (s, 1 H, CHO), 2.80-1.40 (m, 14 H). 13C NMR (63 MHz, CDCl3): δ = 202.5 (C-2′), 199.7 (C-1), 98.4 (C-1′), 41.2 (C-3′), 38.3 (C-2), 35.1 (C-5′), 29.3 (C-7′), 28.6 (C-6′), 25.5 (C-4′), 24.4 (C-2). Anal. Calcd for C10H15NO4: C, 56.33; H, 7.09; N, 6.57. Found: C, 56.59; H, 7.29; N, 6.49.
26For a similar effect of K2CO3 in the Michael reactions of 1,3-diones, see ref. [21]