Subscribe to RSS
DOI: 10.1055/s-0039-1690807
Ni-Catalyzed Reductive Difunctionalization of Alkenes
Grateful for financial support from the ‘1000-Youth Talents Plan’, National Natural Science Foundation of China (No. 21702149), Fundamental Research Funds for the Central Universities (2042018kf0012), and Wuhan University.Publication History
Received: 16 December 2019
Accepted after revision: 09 January 2020
Publication Date:
19 February 2020 (online)
Abstract
Alkene difunctionalization represents one of the most efficient methods to synthesize highly functionalized molecules from simple and readily available starting materials. In contrast to the well-established redox-neutral alkene difunctionalization reactions, reductive alkene difunctionalization, which simultaneously introduces two electrophiles on both sides of the double bond, has been much less developed, especially in enantioselective manner. This review summarizes recent advances in the nickel-catalyzed reductive difunctionalization of alkenes and highlights the enantioselective transformations.
1 Introduction
2 Nickel-Catalyzed Racemic Reductive Difunctionalization of Alkenes
3 Nickel-Catalyzed Enantioselective Reductive Difunctionalization of Alkenes
3.1 Diarylation of Alkenes
3.2 Aryl-alkenylation of Alkenes
3.3 Aryl-monofluoroalkenylation of Alkenes
3.4 Reductive Cyclization/Coupling with Alkynyl Bromides or Asymmetric Internal Alkynes
3.5 Aryl-alkylation of Alkenes
3.6 Aryl-amination of Alkenes
4 Summary and Outlook
-
References
- 1a Dhungana RK, KC S, Basnet P, Giri R. Chem. Rec. 2018; 18: 1314
- 1b Giri R, KC S. J. Org. Chem. 2018; 83: 3013
- 1c Ping Y, Li Y, Zhu J, Kong W. Angew. Chem. Int. Ed. 2019; 58: 1562
- 2a Nédélec JY, Périchon J, Troupel M. Top. Curr. Chem. 1997; 185: 141
- 2b Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
- 2c Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
- 2d Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
- 2e Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 2f Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
- 2g Tollefson EJ, Hanna LE, Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
- 2h Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 2i Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
- 2j Wang X, Dai Y, Gong H. Top. Curr. Chem. (Z) 2016; 374: 43
- 2k Lucas EL, Jarvo ER. Nat. Rev. Chem. 2017; 1: 65
- 2l Richmond E, Moran J. Synthesis 2018; 50: 499
- 3a Yan CS, Peng Y, Xu XB, Wang YW. Chem. Eur. J. 2012; 18: 6039
- 3b Peng Y, Luo L, Yan CS, Zhang JJ, Wang YW. J. Org. Chem. 2013; 78: 10960
- 3c Peng Y, Xu XB, Xiao J, Wang YW. Chem. Commun. 2014; 50: 472
- 3d Xiao J, Wang YW, Peng Y. Synthesis 2017; 49: 3576
- 3e Xiao J, Cong XW, Yang GZ, Wang YW, Peng Y. Chem. Commun. 2018; 54: 2040
- 3f Peng Y, Xiao J, Xu X, Duan S, Ren L, Shao Y, Wang Y. Org. Lett. 2016; 18: 5170
- 3g Ouyang Y, Peng Y, Li W. Tetrahedron 2019; 75: 4486
- 4 Xiao J, Cong X, Yang G, Wang Y, Peng Y. Org. Lett. 2018; 20: 1651
- 5 Kuang Y, Wang X, Anthony D, Diao T. Chem. Commun. 2018; 54: 2558
- 6 Lin Q, Diao T. J. Am. Chem. Soc. 2019; 141: 17937
- 7 García-Domínguez A, Li Z, Nevado C. J. Am. Chem. Soc. 2017; 139: 6835
- 8 Zhao X, Tu HY, Guo L, Zhu S, Qing FL, Chu L. Nat. Commun. 2018; 9: 3488
- 9 Pan R, Shi C, Zhang D, Tian Y, Guo S, Yao H, Lin A. Org. Lett. 2019; 21: 8915
- 10 Shu W, García-Domínguez A, Quirós MT. Mondal R, Cárdenas DJ, Nevado C. J. Am. Chem. Soc. 2019; 141: 13812
- 11 Xu S, Wang K, Kong W. Org. Lett. 2019; 21: 7498
- 12 Shi R, Hu X. Angew. Chem. Int. Ed. 2019; 58: 7454
- 13a Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
- 13b Wang K, Kong W. Synlett 2019; 30: 1008
- 13c Ju B, Chen S, Kong W. Chem. Commun. 2019; 55: 14311
- 14 Li Y, Wang K, Ping Y, Wang Y, Kong W. Org. Lett. 2018; 20: 921
- 15 Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198
- 16a Li Y, Ding Z, Lei A, Kong W. Org. Chem. Front. 2019; 6: 3305
- 16b Ju B, Chen S, Kong W. Org. Lett. 2019; 21: 9343
- 17 Tian Z, Qiao J, Xu G, Pang X, Qi L, Ma W, Zhao Z, Duan J, Du Y, Su P, Liu X, Shu X. J. Am. Chem. Soc. 2019; 141: 7637
- 18 Ma T, Chen Y, Li Y, Ping Y, Kong W. ACS Catal. 2019; 9: 9127
- 19 Ping Y, Wang K, Pan Q, Ding Z, Zhou Z, Guo Y, Kong W. ACS Catal. 2019; 9: 7335
- 20 Qin X, Lee M, Zhou J. Angew. Chem. Int. Ed. 2017; 56: 12723
- 21a Jin Y, Wang C. Chem. Sci. 2019; 10: 1780
- 21b Jin Y, Wang C. Angew. Chem. Int. Ed. 2019; 58: 6722
- 22 Jin Y, Yang H, Wang C. Org. Lett. 2019; 21: 7602
- 23 He J, Xue Y, Han B, Zhang C, Wang Y, Zhu S. Angew. Chem. Int. Ed. 2020; 59: in press; DOI: 10.1002/anie.201913743
- 24 Li J, Luo Y, Cheo H, Lan Y, Wu J. Chem 2019; 5: 192
For selected recent reviews, see:
For reviews on Ni-catalyzed reductive cross-coupling reactions, see: