Subscribe to RSS
DOI: 10.1055/s-0037-1609152
Aminocarbonylation of N-Containing Heterocycles with Aromatic Amines Using Mo(CO)6
French program ‘Investissement d’Avenir – Institut Carnot’ managed by the National Research Agency (ANR-11-CARN-008-01).Publication History
Received: 13 December 2017
Accepted after revision: 13 December 2017
Publication Date:
18 January 2018 (online)
Abstract
We describe herein the palladium-catalyzed aminocarbonylation of nitrogen-containing heterocycles with aniline derivatives using molybdenum hexacarbonyl as a CO solid source, expanding the scope of the limited examples. This method is compatible with a variety of substitutions on the aniline moiety. The simple reaction conditions include easily available Pd(dppf)Cl2 catalyst, DBU as base in DMF at 120 °C for 3 hours in sealed tube thereby leading to the isolation of 21 compounds with yields ranging from 18 to 82%. We also show that double aminocarbonylation reactions are possible in satisfactory yields regarding both coupling partners.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609152.
- Supporting Information
-
References
- 1a The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Material Science . Greenberg A. Breneman CM. Liebman JF. Wiley-Interscience; New York: 2000
- 1b Humphrey JM. Chamberlin AR. Chem. Rev. 1997; 97: 2243
- 2a Valeur E. Bradley M. Chem. Soc. Rev. 2009; 38: 606
- 2b Chaudhari PS. Salim SD. Sawant RV. Akamanchi KG. Green Chem. 2010; 12: 1707
- 2c Lundberg H. Tinnis F. Selander N. Hadolfsson H. Chem. Soc. Rev. 2014; 43: 2714
- 3a Roy S. Roy S. Gribble GW. Tetrahedron 2012; 68: 9867
- 3b Ojeda-Porras A. Gamba-Sanchez D. J. Org. Chem. 2016; 81: 11548
- 3c de Figueiredo RM. Suppo JS. Campagne JM. Chem. Rev. 2016; 116: 12029
- 4a Schoenberg A. Heck RF. J. Org. Chem. 1974; 39: 3327
- 4b Brennführer A. Neumann H. Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
- 5a Friis SD. Skyrdstrup T. Buchwald SL. Org. Lett. 2014; 16: 4296
- 5b Lei Y. Xiao S. Li G. Gu Y. Wu H. Shi K. Appl. Organomet. Chem. 2016; 1
- 6 Takacs A. Jakab B. Petz A. Kollar L. Tetrahedron 2007; 63: 10372
- 7a Morimoto T. Kakiuchi K. Angew. Chem. Int. Ed. 2004; 43: 5580
- 7b Peng J.-B. Qi X. Wu X.-F. Synlett 2017; 28: 175
- 8 Tambade PJ. Patil YP. Bhanushali MJ. Bhanage BM. Synthesis 2008; 2347
- 9 Kaiser N.-FK. Hallberg A. Larhed M. J. Comb. Chem. 2002; 4: 109
- 10 Wannberg J. Larhed M. J. Org. Chem. 2003; 68: 5750
- 11a Odell LR. Russo F. Larhed M. Synlett 2012; 23: 685
- 11b Mane RS. Sasaki T. Bhanage BM. RSC Adv. 2015; 5: 94776
- 11c Hajipour A.-R. Tavangar-Rizi Z. Iranpoor N. RSC Adv. 2016; 6: 78468
- 11d Bordessa A. Ferry A. Lubin-Germain N. J. Org. Chem. 2016; 81: 12459
- 11e Wang Z. Yin Z. Wu X.-F. Chem. Eur. J. 2017; 23: 15026
- 12 Letavic MA. Ly KS. Tetrahedron Lett. 2007; 48: 2339
- 13 Begouin A. Queiroz M.-JR. P. Eur. J. Org. Chem. 2009; 2820
- 14 Iranpoor N. Firouzabadi H. Motevalli S. Talebi M. Tetrahedron 2013; 69: 418
- 15 Wu X.-F. Oschatz S. Sharif M. Beller M. Langer P. Tetrahedron 2014; 70: 23
- 16 Xu T. Alper H. J. Am. Chem. Soc. 2014; 136: 16970
- 17 Fors BP. Dooleweerdt K. Zeng Q. Buchwald SL. Tetrahedron 2009; 65: 6576
- 18 Holsworth D. Waaler J. Machon O. Krauss S. WO 2010139966, 2010
- 19 Fang W. Deng Q. Xu M. Tu T. Org. Lett. 2013; 15: 3678
- 20 Nammalwar B. Muddala NP. Watts FM. Bunce RA. Tetrahedron 2015; 71: 9101
- 21 Kumar KN. Sreeramamurthy K. Palle S. Mukkanti K. Das P. Tetrahedron Lett. 2010; 51: 899
- 22 Crawford SM. Lavery CB. Stradiotto M. Chem. Eur. J. 2013; 19: 16760
- 23 Jarak I. Pavlovic G. Karminski-Zamola G. Struct. Chem. 2007; 18: 103
- 24 Rossi SA. Shimkin KW. Xu Q. Mori-Quiroz LM. Watson DA. Org. Lett. 2013; 15: 2314
- 25 Nicolas L. Angibaud P. Stansfield I. Meerpoel L. Reymond S. Cossy J. RSC Adv. 2013; 3: 18787
For selected reviews:
For recent work: