Semin Thromb Hemost 2016; 42(02): 102-111
DOI: 10.1055/s-0035-1569069
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Thrombotic Risks in Red Blood Cell Transfusions

Timur Dubovoy
1   Department of Anesthesiology, Cardiovascular Center, University of Michigan, Ann Arbor, Michigan
,
Milo Engoren
1   Department of Anesthesiology, Cardiovascular Center, University of Michigan, Ann Arbor, Michigan
› Author Affiliations
Further Information

Publication History

Publication Date:
02 February 2016 (online)

Abstract

Red blood cells play a key role in normal hemostasis and thrombosis. Their ability to affect coagulation is multifactorial and depends on their mechanical properties affecting viscosity and blood flow, ability to aggregate and adhere to each other and potentially to vascular endothelium, molecular signaling via microvesicles and surface proteins, including blood group antigens, and participation in nitric oxide metabolism. Transfused red blood cells suffer from a storage lesion that damages the cells leading to changes in shape, function, and intracellular communication. In this article, we review if and how transfused red blood cells may lead to both increased hemorrhage and increased thrombosis.

 
  • References

  • 1 Small M, Lowe GD, Cameron E, Forbes CD. Contribution of the haematocrit to the bleeding time. Haemostasis 1983; 13 (6) 379-384
  • 2 Soltani G, Fernandez F, Pris J, Boneu B. Prolonged bleeding time in severe anemia [in French]. Presse Med 1986; 15 (16) 745-747
  • 3 Tokish JM, Kocher MS, Hawkins RJ. Ergogenic aids: a review of basic science, performance, side effects, and status in sports. Am J Sports Med 2004; 32 (6) 1543-1553
  • 4 Andrews DA, Low PS. Role of red blood cells in thrombosis. Curr Opin Hematol 1999; 6 (2) 76-82
  • 5 Mehrabadi M, Ku DN, Aidun CK. A continuum model for platelet transport in flowing blood based on direct numerical simulations of cellular blood flow. Ann Biomed Eng 2015; 43 (6) 1410-1421
  • 6 Vahidkhah K, Diamond SL, Bagchi P. Platelet dynamics in three-dimensional simulation of whole blood. Biophys J 2014; 106 (11) 2529-2540
  • 7 Greenwalt TJ. The how and why of exocytic vesicles. Transfusion 2006; 46 (1) 143-152
  • 8 Beusterien KM, Nissenson AR, Port FK, Kelly M, Steinwald B, Ware Jr JE. The effects of recombinant human erythropoietin on functional health and well-being in chronic dialysis patients. J Am Soc Nephrol 1996; 7 (5) 763-773
  • 9 Hébert PC, Wells G, Blajchman MA , et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 1999; 340 (6) 409-417
  • 10 Baskurt OK, Meiselman HJ. Iatrogenic hyperviscosity and thrombosis. Semin Thromb Hemost 2012; 38 (8) 854-864
  • 11 Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol 1987; 49: 177-192
  • 12 Cosemans JM, Angelillo-Scherrer A, Mattheij NJ, Heemskerk JW. The effects of arterial flow on platelet activation, thrombus growth, and stabilization. Cardiovasc Res 2013; 99 (2) 342-352
  • 13 Grabowski EF, Yam K, Gerace M. Evaluation of hemostasis in flowing blood. Am J Hematol 2012; 87 (Suppl. 01) S51-S55
  • 14 De Franceschi L, Cappellini MD, Olivieri O. Thrombosis and sickle cell disease. Semin Thromb Hemost 2011; 37 (3) 226-236
  • 15 Steinberg MH. Management of sickle cell disease. N Engl J Med 1999; 340 (13) 1021-1030
  • 16 Colin Y, Le Van Kim C, El Nemer W. Red cell adhesion in human diseases. Curr Opin Hematol 2014; 21 (3) 186-192
  • 17 Wandersee NJ, Olson SC, Holzhauer SL, Hoffmann RG, Barker JE, Hillery CA. Increased erythrocyte adhesion in mice and humans with hereditary spherocytosis and hereditary elliptocytosis. Blood 2004; 103 (2) 710-716
  • 18 Anand A, Feffer SE. Hematocrit and bleeding time: an update. South Med J 1994; 87 (3) 299-301
  • 19 Duke WW. The relation of blood platelets to hemorrhagic disease. By W.W. Duke. JAMA 1983; 250 (9) 1201-1209
  • 20 Hellem AJ, Borchgrevink CF, Ames SB. The role of red cells in haemostasis: the relation between haematocrit, bleeding time and platelet adhesiveness. Br J Haematol 1961; 7: 42-50
  • 21 Livio M, Gotti E, Marchesi D, Mecca G, Remuzzi G, de Gaetano G. Uraemic bleeding: role of anaemia and beneficial effect of red cell transfusions. Lancet 1982; 2 (8306) 1013-1015
  • 22 Aarts PA, van den Broek SA, Prins GW, Kuiken GD, Sixma JJ, Heethaar RM. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis 1988; 8 (6) 819-824
  • 23 Baumgartner HR. The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc Res 1973; 5 (2) 167-179
  • 24 Dosne AM, Merville C, Drouet L, Antonini G, Guiffant G, Quemada D. Importance of transport mechanisms in circulating blood for platelet deposition on arterial subendothelium. Microvasc Res 1977; 14 (1) 45-52
  • 25 Turitto VT, Baumgartner HR. Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc Res 1975; 9 (3) 335-344
  • 26 Chen H, Angerer JI, Napoleone M , et al. Hematocrit and flow rate regulate the adhesion of platelets to von Willebrand factor. Biomicrofluidics 2013; 7 (6) 64113
  • 27 Turitto VT, Weiss HJ. Red blood cells: their dual role in thrombus formation. Science 1980; 207 (4430) 541-543
  • 28 Marchioli R, Finazzi G, Landolfi R , et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol 2005; 23 (10) 2224-2232
  • 29 Begg TB, Hearns JB. Components in blood viscosity. The relative contribution of haematocrit, plasma fibrinogen and other proteins. Clin Sci 1966; 31 (1) 87-93
  • 30 Kwaan HC, Wang J. Hyperviscosity in polycythemia vera and other red cell abnormalities. Semin Thromb Hemost 2003; 29 (5) 451-458
  • 31 Pearson TC, Wetherley-Mein G. Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. Lancet 1978; 2 (8102) 1219-1222
  • 32 El Nemer W, De Grandis M, Brusson M. Abnormal adhesion of red blood cells in polycythemia vera: a prothrombotic effect?. Thromb Res 2014; 133 (Suppl. 02) S107-S111
  • 33 Baxter EJ, Scott LM, Campbell PJ , et al; Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365 (9464) 1054-1061
  • 34 James C, Ugo V, Le Couédic JP , et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434 (7037) 1144-1148
  • 35 Kralovics R, Passamonti F, Buser AS , et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352 (17) 1779-1790
  • 36 Lippert E, Boissinot M, Kralovics R , et al. The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood 2006; 108 (6) 1865-1867
  • 37 Wautier MP, El Nemer W, Gane P , et al. Increased adhesion to endothelial cells of erythrocytes from patients with polycythemia vera is mediated by laminin alpha5 chain and Lu/BCAM. Blood 2007; 110 (3) 894-901
  • 38 Lubarsky DA, Gallagher CJ, Berend JL. Secondary polycythemia does not increase the risk of perioperative hemorrhagic or thrombotic complications. J Clin Anesth 1991; 3 (2) 99-103
  • 39 Nadeem O, Gui J, Ornstein DL. Prevalence of venous thromboembolism in patients with secondary polycythemia. Clin Appl Thromb Hemost 2013; 19 (4) 363-366
  • 40 Schwarcz TH, Hogan LA, Endean ED, Roitman IT, Kazmers A, Hyde GL. Thromboembolic complications of polycythemia: polycythemia vera versus smokers' polycythemia. J Vasc Surg 1993; 17 (3) 518-522 , discussion 522–523
  • 41 Barr JD, Chauhan AK, Schaeffer GV, Hansen JK, Motto DG. Red blood cells mediate the onset of thrombosis in the ferric chloride murine model. Blood 2013; 121 (18) 3733-3741
  • 42 Zhou S, Welsby I. Is ABO blood group truly a risk factor for thrombosis and adverse outcomes?. World J Cardiol 2014; 6 (9) 985-992
  • 43 Dick W, Schneider W, Brockmueller K, Mayer W. Interrelations of Thrombo-Embolic Diseases and Blood-Group Distribution. Thromb Diath Haemorrh 1963; 143: 472-474
  • 44 Jick H, Slone D, Westerholm B , et al. Venous thromboembolic disease and ABO blood type. A cooperative study. Lancet 1969; 1 (7594) 539-542
  • 45 Robinson WM, Roisenberg I. Venous thromboembolism and ABO blood groups in a Brazilian population. Hum Genet 1980; 55 (1) 129-131
  • 46 Wautrecht JC, Galle C, Motte S, Dereume JP, Dramaix M. The role of ABO blood groups in the incidence of deep vein thrombosis. Thromb Haemost 1998; 79 (3) 688-689
  • 47 Gill JC, Endres-Brooks J, Bauer PJ, Marks Jr WJ, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 1987; 69 (6) 1691-1695
  • 48 Liumbruno GM, Franchini M. Hemostasis, cancer, and ABO blood group: the most recent evidence of association. J Thromb Thrombolysis 2014; 38 (2) 160-166
  • 49 Moeller A, Weippert-Kretschmer M, Prinz H, Kretschmer V. Influence of ABO blood groups on primary hemostasis. Transfusion 2001; 41 (1) 56-60
  • 50 Kyrle PA, Minar E, Hirschl M , et al. High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N Engl J Med 2000; 343 (7) 457-462
  • 51 Jenkins PV, O'Donnell JS. ABO blood group determines plasma von Willebrand factor levels: a biologic function after all?. Transfusion 2006; 46 (10) 1836-1844
  • 52 Ruggeri ZM, Zimmerman TS. The complex multimeric composition of factor VIII/von Willebrand factor. Blood 1981; 57 (6) 1140-1143
  • 53 Nichols WC, Ginsburg D. von Willebrand disease. Medicine (Baltimore) 1997; 76 (1) 1-20
  • 54 Zheng XL. ADAMTS13, TTP and Beyond. Hereditary Genet 2013; 2 (1) e104
  • 55 Wu O, Bayoumi N, Vickers MA, Clark P. ABO(H) blood groups and vascular disease: a systematic review and meta-analysis. J Thromb Haemost 2008; 6 (1) 62-69
  • 56 Dentali F, Sironi AP, Ageno W , et al. Non-O blood type is the commonest genetic risk factor for VTE: results from a meta-analysis of the literature. Semin Thromb Hemost 2012; 38 (5) 535-548
  • 57 He M, Wolpin B, Rexrode K , et al. ABO blood group and risk of coronary heart disease in two prospective cohort studies. Arterioscler Thromb Vasc Biol 2012; 32 (9) 2314-2320
  • 58 Reilly MP, Li M, He J , et al; Myocardial Infarction Genetics Consortium; Wellcome Trust Case Control Consortium. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet 2011; 377 (9763) 383-392
  • 59 Koch CG, Li L, Sessler DI , et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med 2008; 358 (12) 1229-1239
  • 60 Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev 2007; 21 (3) 157-171
  • 61 Rubin O, Canellini G, Delobel J, Lion N, Tissot JD. Red blood cell microparticles: clinical relevance. Transfus Med Hemother 2012; 39 (5) 342-347
  • 62 Rubin O, Crettaz D, Tissot JD, Lion N. Microparticles in stored red blood cells: submicron clotting bombs?. Blood Transfus 2010; 8 (Suppl. 03) s31-s38
  • 63 Zwaal RF, Comfurius P, Bevers EM. Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids. Biochim Biophys Acta 2004; 1636 (2–3) 119-128
  • 64 Willekens FL, Werre JM, Groenen-Döpp YA, Roerdinkholder-Stoelwinder B, de Pauw B, Bosman GJ. Erythrocyte vesiculation: a self-protective mechanism?. Br J Haematol 2008; 141 (4) 549-556
  • 65 Willekens FL, Werre JM, Kruijt JK , et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood 2005; 105 (5) 2141-2145
  • 66 van Beers EJ, Schaap MC, Berckmans RJ , et al; CURAMA study group. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 2009; 94 (11) 1513-1519
  • 67 Mertens K, Bertina RM. The contribution of Ca2+ and phospholipids to the activation of human blood-coagulation Factor X by activated Factor IX. Biochem J 1984; 223 (3) 607-615
  • 68 Sinauridze EI, Kireev DA, Popenko NY , et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97 (3) 425-434
  • 69 Chung SM, Bae ON, Lim KM , et al. Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes. Arterioscler Thromb Vasc Biol 2007; 27 (2) 414-421
  • 70 Beleznay Z, Zachowski A, Devaux PF, Navazo MP, Ott P. ATP-dependent aminophospholipid translocation in erythrocyte vesicles: stoichiometry of transport. Biochemistry 1993; 32 (12) 3146-3152
  • 71 Zwaal RF, Bevers EM, Comfurius P, Rosing J, Tilly RH, Verhallen PF. Loss of membrane phospholipid asymmetry during activation of blood platelets and sickled red cells; mechanisms and physiological significance. Mol Cell Biochem 1989; 91 (1–2) 23-31
  • 72 Bevers EM, Wiedmer T, Comfurius P , et al. Defective Ca(2+)-induced microvesiculation and deficient expression of procoagulant activity in erythrocytes from a patient with a bleeding disorder: a study of the red blood cells of Scott syndrome. Blood 1992; 79 (2) 380-388
  • 73 Biró E, Sturk-Maquelin KN, Vogel GM , et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost 2003; 1 (12) 2561-2568
  • 74 Doyle MP, Hoekstra JW. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem 1981; 14 (4) 351-358
  • 75 Gladwin MT, Lancaster Jr JR, Freeman BA, Schechter AN. Nitric oxide's reactions with hemoglobin: a view through the SNO-storm. Nat Med 2003; 9 (5) 496-500
  • 76 Allen BW, Stamler JS, Piantadosi CA. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol Med 2009; 15 (10) 452-460
  • 77 Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996; 380 (6571) 221-226
  • 78 Pawloski JR, Swaminathan RV, Stamler JS. Cell-free and erythrocytic S-nitrosohemoglobin inhibits human platelet aggregation. Circulation 1998; 97 (3) 263-267
  • 79 Simon DI, Stamler JS, Jaraki O , et al. Antiplatelet properties of protein S-nitrosothiols derived from nitric oxide and endothelium-derived relaxing factor. Arterioscler Thromb 1993; 13 (6) 791-799
  • 80 Chin-Yee I, Arya N, d'Almeida MS. The red cell storage lesion and its implication for transfusion. Transfus Sci 1997; 18 (3) 447-458
  • 81 Bosman GJ, Werre JM, Willekens FL, Novotný VM. Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion. Transfus Med 2008; 18 (6) 335-347
  • 82 Lion N, Crettaz D, Rubin O, Tissot JD. Stored red blood cells: a changing universe waiting for its map(s). J Proteomics 2010; 73 (3) 374-385
  • 83 Bennett-Guerrero E, Veldman TH, Doctor A , et al. Evolution of adverse changes in stored RBCs. Proc Natl Acad Sci U S A 2007; 104 (43) 17063-17068
  • 84 Gao Y, Lv L, Liu S, Ma G, Su Y. Elevated levels of thrombin-generating microparticles in stored red blood cells. Vox Sang 2013; 105 (1) 11-17
  • 85 Rubin O, Crettaz D, Canellini G, Tissot JD, Lion N. Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools. Vox Sang 2008; 95 (4) 288-297
  • 86 Donadee C, Raat NJ, Kanias T , et al. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation 2011; 124 (4) 465-476
  • 87 Riccio DA, Zhu H, Foster MW , et al. Renitrosylation of banked human red blood cells improves deformability and reduces adhesivity. Transfusion 2015;
  • 88 Keating FK, Butenas S, Fung MK, Schneider DJ. Platelet-white blood cell (WBC) interaction, WBC apoptosis, and procoagulant activity in stored red blood cells. Transfusion 2011; 51 (5) 1086-1095
  • 89 Carpeggiani C, Coceani M, Landi P, Michelassi C, L'abbate A. ABO blood group alleles: A risk factor for coronary artery disease. An angiographic study. Atherosclerosis 2010; 211 (2) 461-466
  • 90 Wiggins KL, Smith NL, Glazer NL , et al. ABO genotype and risk of thrombotic events and hemorrhagic stroke. J Thromb Haemost 2009; 7 (2) 263-269
  • 91 Roeloffzen WW, Kluin-Nelemans HC, Bosman L, de Wolf JT. Effects of red blood cells on hemostasis. Transfusion 2010; 50 (7) 1536-1544
  • 92 Larsen AM, Leinøe EB, Johansson PI, Birgens H, Ostrowski SR. Haemostatic function and biomarkers of endothelial damage before and after RBC transfusion in patients with haematologic disease. Vox Sang 2015; 109 (1) 52-61
  • 93 Silvain J, Pena A, Cayla G , et al. Impact of red blood cell transfusion on platelet activation and aggregation in healthy volunteers: results of the TRANSFUSION study. Eur Heart J 2010; 31 (22) 2816-2821
  • 94 Silvain J, Abtan J, Kerneis M , et al. Impact of red blood cell transfusion on platelet aggregation and inflammatory response in anemic coronary and noncoronary patients: the TRANSFUSION-2 study (impact of transfusion of red blood cell on platelet activation and aggregation studied with flow cytometry use and light transmission aggregometry). J Am Coll Cardiol 2014; 63 (13) 1289-1296
  • 95 Blair SD, Janvrin SB, McCollum CN, Greenhalgh RM. Effect of early blood transfusion on gastrointestinal haemorrhage. Br J Surg 1986; 73 (10) 783-785
  • 96 Restellini S, Kherad O, Jairath V, Martel M, Barkun AN. Red blood cell transfusion is associated with increased rebleeding in patients with nonvariceal upper gastrointestinal bleeding. Aliment Pharmacol Ther 2013; 37 (3) 316-322
  • 97 Villanueva C, Colomo A, Bosch A , et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med 2013; 368 (1) 11-21
  • 98 Thai L, McCarn K, Stott W , et al. Venous thromboembolism in patients with head and neck cancer after surgery. Head Neck 2013; 35 (1) 4-9
  • 99 Lee HK, Kim DH, Jin US, Jeon YT, Hwang JW, Park HP. Effect of perioperative transfusion of old red blood cells on postoperative complications after free muscle sparing transverse rectus abdominis myocutaneous flap surgery for breast reconstruction. Microsurgery 2014; 34 (6) 434-438
  • 100 Khorana AA, Francis CW, Blumberg N, Culakova E, Refaai MA, Lyman GH. Blood transfusions, thrombosis, and mortality in hospitalized patients with cancer. Arch Intern Med 2008; 168 (21) 2377-2381
  • 101 Xenos ES, Vargas HD, Davenport DL. Association of blood transfusion and venous thromboembolism after colorectal cancer resection. Thromb Res 2012; 129 (5) 568-572
  • 102 Kumar MA, Boland TA, Baiou M , et al. Red blood cell transfusion increases the risk of thrombotic events in patients with subarachnoid hemorrhage. Neurocrit Care 2014; 20 (1) 84-90
  • 103 Tan TW, Farber A, Hamburg NM , et al; Vascular Study Group of New England. Blood transfusion for lower extremity bypass is associated with increased wound infection and graft thrombosis. J Am Coll Surg 2013; 216 (5) 1005-1014.e2 , quiz 1031–1033
  • 104 Paone G, Likosky DS, Brewer R , et al; Membership of the Michigan Society of Thoracic and Cardiovascular Surgeons. Transfusion of 1 and 2 units of red blood cells is associated with increased morbidity and mortality. Ann Thorac Surg 2014; 97 (1) 87-93 , discussion 93–94
  • 105 Schwann TA, Kistler L, Engoren MC, Habib RH. Incidence and predictors of postoperative deep vein thrombosis in cardiac surgery in the era of aggressive thromboprophylaxis. Ann Thorac Surg 2010; 90 (3) 760-766 , discussion 766–768
  • 106 Engoren M, Schwann TA, Jewell E , et al. Is transfusion associated with graft occlusion after cardiac operations?. Ann Thorac Surg 2015; 99 (2) 502-508
  • 107 Rao SV, Jollis JG, Harrington RA , et al. Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA 2004; 292 (13) 1555-1562
  • 108 Carson JL, Grossman BJ, Kleinman S , et al; Clinical Transfusion Medicine Committee of the AABB. Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann Intern Med 2012; 157 (1) 49-58
  • 109 Adams RJ, McKie VC, Hsu L , et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 1998; 339 (1) 5-11
  • 110 DeBaun MR, Gordon M, McKinstry RC , et al. Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia. N Engl J Med 2014; 371 (8) 699-710