Synlett 2016; 27(12): 1840-1843
DOI: 10.1055/s-0035-1561626
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Sulfonyl Azides via Lewis Base Activation of Sulfonyl Fluorides and Trimethylsilyl Azide

Andrew S. Barrow
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK   Email: John.moses@nottingham.ac.uk
,
John E. Moses*
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK   Email: John.moses@nottingham.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 25 February 2016

Accepted after revision: 01 April 2016

Publication Date:
21 April 2016 (online)


Abstract

A protocol for the efficient conversion of sulfonyl fluorides into sulfonyl azides through Lewis base activation is described. The in situ generated sulfonyl azides are efficient diazo-transfer agents, affording diazo compounds and primary azides in excellent yields.

Supporting Information

 
  • References and Notes

  • 1 Kim SH, Park SH, Choi JH, Chang S. Chem. Asian J. 2011; 6: 2618
  • 2 Ye T, Mckervey MA. Chem. Rev. 1994; 1091
  • 3 Hughes CC, Kennedy-Smith JJ, Trauner D. Org. Lett. 2003; 5: 4113
  • 4 Kitamura M, Kato S, Yano M, Tashiro N, Shiratake Y, Sando M, Okauchi T. Org. Biomol. Chem. 2014; 12: 4397
  • 5 Erdik E. Tetrahedron 2004; 60: 8747
  • 6 Culhane JC, Fokin VV. Org. Lett. 2011; 13: 4578
  • 9 Driver TG. Org. Biomol. Chem. 2010; 8: 3831
  • 10 Katritzky AR, Widyan K, Gyanda K. Synthesis 2008; 1201
  • 11 Maleki B, Hemmati S, Tayebee R, Salemi S, Farokhzad Y, Baghayeri M, Zonoz FM, Akbarzadeh E, Moradi R, Entezari A, Abdi MR, Ashrafi SS, Taimazi F, Hashemi M. Helv. Chim. Acta 2013; 96: 2147
  • 12 Štefane B, Kočevar M, Polanc S. J. Org. Chem. 1997; 62: 7165
  • 13 Raushel J, Pitram SM, Fokin VV. Org. Lett. 2008; 10: 3385
  • 14 Goddard-Borger ED, Stick RV. Org. Lett. 2007; 9: 3797
  • 15 Stevens MY, Sawant RT, Odell LR. J. Org. Chem. 2014; 79: 4826
  • 16 Goddard-Borger ED, Stick RV. Org. Lett. 2011; 13: 2514
  • 17 Suárez JR, Trastoy B, Pérez-Ojeda ME, Marín-Barrios R, Chiara JL. Adv. Synth. Catal. 2010; 352: 2515
  • 18 Davies HM. L, Cantrell WR, Romines KR, Baum JS. Org. Synth. 1992; 70: 93
  • 19 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
  • 20 It should be noted that, in general, sulfonyl chlorides do not undergo reductive collapse in the presence of azide ions.
  • 21 Gembus V, Marsais F, Levacher V. Synlett 2008; 1463

    • There is literature precedent for the conversion of sulfonyl fluorides to sulfonyl azides using NaN3 in MeCN on an extremely electrophilic substrate:
    • 22a Kamoshenkova OM, Boiko VN. J. Fluorine Chem. 2010; 131: 248

    • Conversion of sulfonyl fluorides to sulfonyl azides using NaN3 in wet acetone has been reported:
    • 22b McManus SP, Smith MR, Abramovitch RA, Offor MN. J. Org. Chem. 1984; 49: 683
  • 23 We continued our studies with TMSN3 over NaN3 due to its convenient liquid form, although both are viable options.
  • 24 Typical Procedure for the Synthesis of Compound 2a To a solution of 2-nitrobenzenesulfonyl fluoride (103 mg, 0.5 mmol) in MeCN (1 mL) was added DBU (22 μL, 0.15 mmol, 0.3 equiv) followed by TMSN3 (50 μL, 0.375 mmol, 0.75 equiv). The resultant solution was stirred at room temperature for 15 min, then a further portion of TMSN3 (50 μL, 0.375 mmol, 0.75 equiv) was added. The solution was stirred for a further 45 min, filtered through a silica plug, eluting with EtOAc (50 mL), and volatiles removed under reduced pressure to yield 2a as a white solid. (105 mg, 0.46 mmol, 92%). 1H NMR (400 MHz, CDCl3): δ = 8.49–8.46 (m, 2 H), 8.20–8.16 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 151.2, 143.7, 128.9, 124.9. IR (CHCl3): 2134 cm–1.
  • 25 See the Supporting Information for more information.
  • 26 Whilst the reduction of the corresponding sulfonyl chloride has been reported, in our hands, the transformation proved unsuccessful: Basoglu S, Demirbas A, Ulker S, Alpay-Karaoglu S, Demirbas N. Eur. J. Med. Chem. 2013; 69: 622
  • 27 Barral K, Moorhouse AD, Moses JE. Org. Lett. 2007; 9: 1809
  • 28 Excess TMSN3 is destroyed in the workup procedure with tri­phenylphosphine in the rotary evaporator solvent trap.
  • 29 Vorbrüggen H. Synthesis 2008; 1165
  • 30 Yeom C.-E, Kim H, Lee S, Kim B. Synlett 2007; 146