Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(08): 1132-1136
DOI: 10.1055/s-0033-1341048
DOI: 10.1055/s-0033-1341048
letter
Iron-Catalyzed Borylation Reactions of Alkynes: An Efficient Synthesis of E-Vinyl Boronates
Further Information
Publication History
Received: 23 December 2013
Accepted after revision: 02 March 2014
Publication Date:
27 March 2014 (online)
Abstract
Iron nanoparticles or ferric chloride catalyze the monoborylation of alkynes using bis(pinacolato)diboron to provide E-vinyl boronates with high regio- and stereoselectivity in good to excellent yields. High catalytic activity was observed and the catalyst could be recovered simply by using an external magnetic field. The magnetic nanoparticles were recycled six times without any significant loss of catalytic activity.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Burgess K, Ohlmeyer MJ. Chem. Rev. 1991; 91: 1179
- 1b Beletskaya I, Pelter A. Tetrahedron 1997; 53: 4957
- 1c Miyaura N, Togni A, Grützmacher H In Catalytic Heterofunctionalization . Wiley-VCH; Chichester: 2001. Chap. 1
- 1d Crudden CM, Edwards D. Eur. J. Org. Chem. 2003; 4695
- 1e Vogels CM, Westcott SA. Curr. Org. Chem. 2005; 9: 687
- 2a Pelter A, Smith K, Brown HC. Borane Reagents . Academic Press; London: 1988
- 2b Matteson DS. Stereodirected Synthesis with Organoboranes. 1995
- 3a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 3b Suzuki A, Diederich F, Stang PJ In Metal-Catalyzed Cross-Coupling Reactions . Wiley-VCH; Weinheim: 1998: 49
- 3c Miyaura N In Advances in Metal-Organic Chemistry . Vol. 6. Liebeskind LS. JAI Press; London: 1998: p 187
- 3d Miyaura N. Top. Curr. Chem. 2002; 219: 11
- 3e Suzuki A, Brown HC. Organic Syntheses Via Boranes, Vol. 3, Suzuki Coupling . Aldrich Chemical; Milwaukee: 2003
- 4a Miyaura N. In ACS Symposium Series 783 . American Chemical Society; Washington DC: 2001
- 4b Ramachandran PV, Brown HC. Organoboranes for Syntheses . American Chemical Society; Washington DC: 2001. Chap. 7
- 4c Fagnou K, Lautens M. Chem. Rev. 2003; 103: 169
- 4d Hayashi T, Yamasaki K. Chem. Rev. 2003; 103: 2829
- 5a Matteson DS. Tetrahedron 1998; 54: 10555
- 5b Matteson DS. J. Organomet. Chem. 1999; 51: 581
- 6 For the Petasis reaction, see: Petasis NA, Zavialov IA. In Advances in Boron Chemistry . The Royal Society of Chemistry; Cambridge: 1997: 179
- 7a Chan DM. T, Monaco KL, Wang R.-P, Winters MP. Tetrahedron Lett. 1998; 39: 2933
- 7b Evans DA, Katz JL, West TR. Tetrahedron Lett. 1998; 39: 2937
- 7c Herradura PS, Pendola KA, Guy RK. Org. Lett. 2000; 2: 2019
- 8a de Vries JG, Hubbard SA. Chem. Commun. 1988; 1172
- 8b Wulff G, Birnbrich P, Hansen A. Angew. Chem., Int. Ed. Engl. 1988; 27: 1158
- 9 For Lewis acid catalysts, see: Ishihara K, Yamamoto H. Eur. J. Org. Chem. 1999; 527
- 10a Hartley JH, James TD, Ward CJ. J. Chem. Soc., Perkin Trans. 1 2000; 3155
- 10b Shinkai S, Ikeda M, Sugasaki A, Takeuchi M. Acc. Chem. Res. 2001; 34: 494
- 11a Matsumi N, Naka K, Chujo Y. J. Am. Chem. Soc. 1998; 120: 5112
- 11b Matsumi N, Naka K, Chujo Y. J. Am. Chem. Soc. 1998; 120: 10776
- 11c Entwistle CD, Marder TB. Angew. Chem. Int. Ed. 2002; 41: 2927
- 12a Smith K, Trost BM, Fleming I, Pelter A In Comprehensive Organic Synthesis . Vol. 8. Pergamon Press; Oxford: 1991: 703
- 12b Suzuki A. J. Organomet. Chem. 1999; 576: 147
- 12c Tucker CE, Davidson J, Knochel P. J. Org. Chem. 1992; 57: 3482
- 13a Männing D, Nöth H. Angew. Chem., Int. Ed. Engl. 1985; 24: 878
- 13b Gridnev ID, Miyaura N, Suzuki A. Organometallics 1993; 12: 589
- 13c Pereira S, Srebnik M. Organometallics 1995; 14: 3127
- 13d He X, Hartwig JF. J. Am. Chem. Soc. 1996; 118: 1696
- 13e Pereira S, Srebnik M. Tetrahedron Lett. 1996; 37: 3283
- 13f Dang L, Zhao H, Lin Z, Marder TB. Organometallics 2007; 26: 2824
- 13g Dang L, Zhao H, Lin Z, Marder TB. Organometallics 2008; 27: 1178
- 13h Kim HR, Yun J. Chem. Commun. 2011; 47: 2943
- 13i Jang H, Zhugralin AR, Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7859
- 13j Yoshida H, Kawashima S, Takemoto Y, Okada K, Ohshita J, Takaki K. Angew. Chem. Int. Ed. 2012; 51: 235
- 13k Jung H.-Y, Yun J. Org. Lett. 2012; 14: 2606
- 13l Jung H.-Y, Feng X, Kim H, Yun J. Tetrahedron 2012; 68: 3444
- 13m Semba K, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2012; 18: 4179
- 13n Yuan W, Ma S. Org. Biomol. Chem. 2012; 10: 7266
- 13o Stavber G, Casar Z. Appl. Organomet. Chem. 2013; 27: 159
- 14a Takahashi K, Ishiyama T, Miyaura N. J. Organomet. Chem. 2001; 625: 47
- 14b Ito H, Ito S, Sasaki Y, Matsuura K, Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
- 14c Ito H, Sasaki Y, Sawamura M. J. Am. Chem. Soc. 2008; 130: 15774
- 14d Lee J.-E, Yun J. Angew. Chem. 2008; 120: 151 ; Angew. Chem. Int. Ed.; 2008, 47: 145
- 14e Ito H, Kosaka Y, Nonoyama K, Sasaki Y, Sawamura M. Angew. Chem. Int. Ed. 2008; 47: 7424 ; Angew. Chem. 2008, 120, 7534
- 14f Lee J.-E, Kwon J, Yun J. Chem. Commun. 2008; 733
- 14g Lee YA, Hoveyda H. J. Am. Chem. Soc. 2009; 131: 3160
- 14h Lee Y, Jang H, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 234
- 14i Lillo V, Prieto A, Bonet A, DÍaz-Requejo MM, RamÍrez J, Pérez PJ, Fernández E. Organometallics 2009; 28: 659
- 14j Kim H.-R, Jung I.-G, Yoo K, Jang K, Lee E.-S, Yun J, Son S.-U. Chem. Commun. 2010; 46: 758
- 14k Sasaki Y, Zhong C, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 1226
- 14l Ito H, Toyoda T, Sawamura M. J. Am. Chem. Soc. 2010; 132: 5990
- 14m Zhong C, Kunii S, Kosaka Y, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 11440
- 14n Laitar DS, Müller P, Sadighi JP. J. Am. Chem. Soc. 2005; 127: 17196
- 14o Segawa Y, Yamashita M, Nozaki K. Angew. Chem. Int. Ed. 2007; 46: 6710 ; Angew. Chem. 2007, 119, 6830
- 14p Okuno Y, Yamashita M, Nozaki K. Angew. Chem. Int. Ed. 2011; 50: 920 ; Angew. Chem. 2011, 123, 950
- 15a Latham AH, Williams ME. Acc. Chem. Res. 2008; 41: 411
- 15b Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN. Chem. Rev. 2008; 108: 2064
- 15c Sun S, Zeng H. J. Am. Chem. Soc. 2002; 124: 8204
- 15d Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
- 15e Sarhan AA. O, Bolm C. Chem. Soc. Rev. 2009; 38: 2730
- 15f Morris RH. Chem. Soc. Rev. 2009; 38: 2282
- 15g Cheng ZY, Li YZ. Chem. Rev. 2007; 107: 748
- 15h Sherry BD, Fürstner A. Acc. Chem. Res. 2008; 41: 1500
- 16 Grirrane A, Corma A, Garcia H. Chem. Eur. J. 2011; 17: 2467
- 17 Kirai N, Iguchi S, Ito T, Takaya J, Iwasawa N. Bull. Chem. Soc. Jpn. 2013; 86: 784
- 18 Polshettiwar V, Baruwati B, Varma RS. Green Chem. 2009; 11: 127
- 19 Typical Procedure: A mixture of alkyne (1 mmol), bis(pinacolato)diboron (1.2 mmol), Cs2CO3 (2 mmol) and np Fe3O4 or FeCl3 (5 mol%) in acetone (5 mL) in a sealed tube was heated at 60 °C for 12 h. After completion of the reaction, EtOAc (1 mL) was added to the reaction mixture. An external magnet was applied to the reaction vial to accumulate catalyst, then the organic layer was decanted. This procedure was repeated two more times with EtOAc then twice with H2O. The separated catalyst was then dried in an oven. For subsequent runs, fresh starting materials were added to the vial and the reaction was conducted as described above. The combined organic and aqueous phases were separated, and the aqueous layer was extracted with EtOAc twice more. The combined organic layers were washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by silica chromatography, eluting with hexane and acetone, to afford the pure product.
- 20 (E)-2-[2-(6-Methoxynaphthalen-2-yl)vinyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c): White crystalline powder; IR (KBr): 473, 633, 814, 845, 895, 973, 1000, 1033, 1144, 1164, 1203, 1262, 1330, 1357, 1392, 1460, 1482, 1502, 1620, 2932, 2976, 3052, 3428 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.32 (s, 12 H, 4CH3), 3.91 (s, 3 H, ArOCH3), 6.22 (d, J = 18.1 Hz, 1 H, trans-CH=CH), 7.08–7.13 (m, 2 H, ArH), 7.51–7.56 (m, 1 H, ArH), 7.64–7.23 (m, 3 H, ArH), 7.77 (s, 1 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 24.7, 55.3, 83.2, 105.7, 118.4, 118.9, 123.9, 125.5, 126.5, 127.0, 127.8, 129.8, 134.9, 149.6, 158.1. MS (ESI): m/z = 311 [M]+. HRMS (ESI+): m/z [M]+ calcd for C19H24O3B: 311.1813; found: 311.1820.
- 21 (E)-2-[3,5-Bis(trifluoromethyl)styryl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3d): Light-yellow oil; IR (neat): 682, 705, 724, 846, 896, 968, 1137, 1174, 1279, 1332, 1377, 1464, 1513, 1624, 1716, 2856, 2928 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.31 (s, 12 H, 4CH3), 6.31 (d, J = 17.9 Hz, 1 H, trans-CH=CH), 7.41 (d, J = 18.9 Hz, 1 H, trans-CH=CH), 7.77 (s, 1 H, ArH), 7.88 (s, 2 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 24.7, 83.4, 119.5, 126.3, 126.7, 128.4, 131.0, 136.7, 145.8. MS (ESI): m/z = 391 [M + Na]+. HRMS (ESI+): m/z [M + H]+ calcd for C16H18BF6O2: 367.1299; found: 367.1298.
For catalyzed hydroboration, see:
For general reviews, see:
For Pd-catalyzed cross-coupling reactions, see:
For Rh-catalyzed conjugate addition, see:
For Matteson homologation, see ref. 1b and:
For Cu-promoted N-, O-, or S-arylation, see:
For templates, see:
For sugar receptors, see:
For boron polymers, see:
For catalytic hydroboration of alkynes, see:
For examples, see:
For studies on borylcopper species, see:
For examples, see:
For selected reviews on Fe catalysis, see: