Subscribe to RSS
DOI: 10.1055/s-0029-1218733
Copper(I)-Zeolites as New Heterogeneous and Green Catalysts for Organic Synthesis
Publication History
Publication Date:
12 April 2010 (online)
Abstract
We have evaluated the potential of CuI-doped zeolites as heterogeneous catalysts for organic synthesis. Such catalysts proved to be easy to prepare, handle, recover, and recycle. They could be applied to different synthetic applications, such as [3+2] cycloadditions of alkynes with either azides or azomethine imines and the homocoupling of alkynes. These interesting characteristics make them highly attractive as catalysts for organic chemists, especially with regard to aspects of ‘green chemistry’.
1 Introduction
2 Synthesis and Structures of CuI-Doped Zeolites
3 CuI-Zeolites as Catalysts in Organic Synthesis
3.1 Cycloadditions: ‘Click in Zeo’
3.2 Cascade Reactions: Substitution and Cycloaddition
3.3 Cycloadditions: Mechanistic Investigations
3.4 Homocoupling of Alkynes
4 Conclusion
Key words
zeolite - copper - catalysis - green chemistry
-
1a
Anastas PT.Warner JC. Green Chemistry: Theory and Practice Oxford University Press; Oxford: 1998. -
1b
Green
Chemistry: Frontiers in Benign Chemical Synthesis and Processes
Anastas P.Williamson TC. Oxford University Press; Oxford: 1998. -
1c
Green Chemistry:
Challenging Perspectives
Tundo P.Anastas PT. Oxford University Press; Oxford: 1999. -
1d
Clark JH. Green Chem. 1999, 1: 1 - For recent examples with liquid superacids, see:
-
2a
Vasilyev A.Walspurger S.Haouas M.Pale P.Sommer J.Rudenko AP. Org. Biomol. Chem. 2004, 2: 3483 -
2b
Vasilyev A.Walspurger S.Sommer J.Pale P. Tetrahedron 2005, 61: 3559 -
2c
Vasilyev A.Walspurger S.Chassaing S.Pale P.Sommer J. Eur. J. Org. Chem. 2007, 5740 - For recent examples with solid superacids (i.e., zeolites), see:
-
2d
Sani Souna Sido A.Chassaing S.Kumarraja M.Pale P.Sommer J. Tetrahedron Lett. 2007, 48: 5911 -
2e
Sani Souna Sido A.Chassaing S.Pale P.Sommer J. Appl. Catal., A 2008, 336: 101 -
2f
Chassaing S.Kumarraja M.Pale P.Sommer J. Org. Lett. 2007, 9: 3889 -
3a
Evano G.Blanchard N.Tourni M. Chem. Rev. 2008, 108: 3054 -
3b
Modern
Organocopper Chemistry
Krause N. Wiley-VCH; Weinheim: 2002. -
3c
Comprehensive Organometallic
Chemistry III
Vols. 10 and 11:
Crabtree R.Mingos DMP. Elsevier; Oxford: 2006. - 4
Kolb HC.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004 -
5a
Kallo D. Rev. Mineral. Geochem. 2001, 45: 519 -
5b
Larsen SC. In Environmental CatalysisGrassian VK. CRC Press; Boca Raton: 2005. p.269 -
6a For
a recent review, see:
Berthomieu D.Delahay G. Catal. Rev. 2006, 48: 269 -
6b
Delahay G.Coq B.Broussous L. Appl. Catal., B 1997, 12: 49 -
6c
Nam I.-S,Yim SD,Baik JH,Oh SH, andCho BK. inventors; WO 2004,108,264. - 7
Han H.-S, andKim E.-S. inventors; WO 2007,004,774. - 8
Weitkamp J,Ernst S,Roeck H,Scheinost K,Hammer B,Goll W, andMichaud H. inventors; DE 4026364. - 9
Chen HY.Chen L.Lin J.Tan KL.Li J. Inorg. Chem. 1997, 36: 1417 -
10a
Drake IJ.Zhang Y.Briggs D.Lim B.Chau T.Bell AT. J. Phys. Chem. B 2006, 110: 11654 -
10b
King ST. J. Catal. 1996, 161: 530 -
10c
King ST. Catal. Today 1997, 33: 173 - 11
Kazansky VB.Pidko EA. Catal. Today 2005, 110: 281 - 12
Gomez-Lor B.Iglesias M.Cascales C.Gutierrez-Puebla E.Monge MA. Chem. Mater. 2001, 13: 1364 -
13a
Spoto G.Zecchina A.Bordiga S.Richiardi G.Martra G. Appl. Catal., B 1994, 3: 151 -
13b
Lamberti C.Bordiga S.Salvalaggio M.Spoto G.Zecchina A.Geobaldo F.Vlaic G.Bellatreccia M. J. Phys. Chem. B 1997, 101: 344 -
13c
Li Z.Xie K.Slade RCT. Appl. Catal., A 2001, 209: 107 - 15
Kuhn P.Pale P.Sommer J.Louis B. J. Phys. Chem. C 2009, 113: 2903 - 16
Cycloaddition
Reactions in Organic Synthesis
Kobayashi S.Jørgensen KA. Wiley-VCH; Weinheim: 2001. -
17a
Huisgen R.Szeimis G.Moebius L. Chem. Ber. 1967, 100: 2494 -
17b
Huisgen R. In 1,3-Dipolar Cycloaddition ChemistryPadwa A. Wiley; New York: 1984. p.1-176 -
17c
Huisgen R. Pure Appl. Chem. 1989, 61: 613 -
18a
Tornøe CW.Christensen C.Meldal M. J. Org. Chem. 2002, 67: 3057 -
18b
Rostovtsev VV.Green LG.Fokin VV.Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2596 - For recent reviews, see:
-
19a
Bock VD.Hiemstra H.van Maarseveen JH. Eur. J. Org. Chem. 2006, 51 -
19b
Moses JE.Moorhouse AD. Chem. Soc. Rev. 2007, 36: 1249 -
19c
Lutz J.-F. Angew. Chem. Int. Ed. 2007, 46: 1018 -
19d
Meldal M.Tornøe CW. Chem. Rev. 2008, 108: 2952 -
20a
Dorn H.Otto A. Chem. Ber. 1968, 101: 3287 -
20b
Dorn H.Otto A. Angew. Chem., Int. Ed. Engl. 1968, 7: 214 - 21
Shintani R.Fu GC. J. Am. Chem. Soc. 2003, 125: 10778 - 22
Vayssilov G. Quantum Chemical Modeling the Location of Extraframework Metal Cations in Zeolites, In Theoretical Aspect of Heterogeneous Catalysis Vol. 8: Springer; Heidelberg: 2002. p.29-30 - 23
Chassaing S.Kumarraja M.Sani Souna Sido A.Pale P.Sommer J. Org. Lett. 2007, 9: 883 - 24
Keller M.Sani Souna Sido A.Pale P.Sommer J. Chem. Eur. J. 2009, 15: 2810 - 25 10 mol% of CuI-zeolite
catalyst correspond to 10 mol% of CuI species
as calculated from exchange of the acidic sites of the corresponding
H-zeolite. For a recent method of determination of Brönsted
acid sites on zeolites, see:
Louis B.Walspurger S.Sommer J. Catal. Lett. 2004, 93: 81 - 26
Chassaing S.Sani Souna Sido A.Alix A.Kumarraja M.Pale P.Sommer J. Chem. Eur. J. 2008, 14: 6713 -
27a
Lewandos GS.Maki JW.Ginnebaugh JP. Organometallics 1982, 1: 1700 -
27b
Halbes-Letinois U.Pale P.Berger S. J. Org. Chem. 2005, 70: 9185 - 28 Deuterated zeolites were prepared
through H/D exchange from native H-zeolites, according
to :
Haouas M.Walspurger S.Taulelle F.Sommer J. J. Am. Chem. Soc. 2004, 126: 599 -
29a
Glaser C. Ber. Dtsch. Chem. Ges. 1869, 2: 422 -
29b
Glaser C. Justus Liebigs Ann. Chem. 1870, 154: 137 - 30
Shi Shun ALK.Tykwinski RR. Angew. Chem. Int. Ed. 2006, 45: 1034 -
31a
Gholami M.Tykwinski RR. Chem. Rev. 2006, 106: 4997 -
31b
Morgan BJ.Xie X.Phuan PW.Kozlowski MC. J. Org. Chem. 2007, 72: 6171 -
32a
Cataldo F. Polyynes: Synthesis, Properties and Applications CRC Press; Boca Raton: 2005. -
32b
Diederich F.Stang PJ.Tykwinski RR. Acetylene Chemistry: Chemistry, Biology, and Material Science Wiley-VCH; Weinheim: 2005. -
33a
Santoyo-Gonzalez F.Torres-Pinedo A.Sanchez-Ortega A. J. Org. Chem. 2000, 65: 4409 -
33b
Chang K.-J.Chae MK.Lee C.Lee J.-Y.Jeong K.-S. Tetrahedron Lett. 2006, 47: 6385 -
33c
Opris DM.Ossenbach A.Lentz D.Schlüter AD. Org. Lett. 2008, 10: 2091 -
34a
Eglinton G.Galbraith AR. Chem. Ind. (London) 1956, 737 -
34b
Eglinton G.Galbraith AR. J. Chem. Soc. 1959, 889 -
34c
Hay AS. J. Org. Chem. 1962, 27: 3320 -
34d
Rossi R.Carpita A.Bigelli C. Tetrahedron Lett. 1985, 26: 523 -
34e
Siemsen P.Livingston RC.Diederich F. Angew. Chem. Int. Ed. 2000, 39: 2632 -
34f
Adimurthy S.Malakar CC.Beifuss U. J. Org. Chem. 2009, 74: 5648 -
34g
Li L.Wang J.Zhang G.Liu Q. Tetrahedron Lett. 2009, 50: 4033 - 35
Oishi T.Katayama T.Yamaguchi K.Mizuno N. Chem. Eur. J. 2009, 15: 7539 - 36
Kuhn P.Alix A.Kumarraja M.Louis B.Pale P.Sommer J. Eur. J. Org. Chem. 2009, 423 - 37
Derouane EG. From shape selective zeolites to zeozymes: confinement effects in sorption and catalysis by zeolites First Francqui Colloquium; Brussels: 1996. - 38
Roy R.Das SK.Hernández-Meteo F.Santoyo-González F.Gan Z. Synthesis 2001, 1049 -
39a
Carbohydrates in Chemistry and Biology
Vols.
1-4:
Ernst B.Hart GW.Sinaÿ P. Wiley-VCH; Weinheim: 2000. -
39b
Glycoscience
Driguez H.Thiem J. Springer; Berlin: 1997. -
39c
Gruner SAW.Locardi E.Lohof E.Kessler H. Chem. Rev. 2002, 102: 491 -
39d
Davis BG. Chem. Rev. 2002, 102: 579 -
40a
Chodkiewicz W.Cadiot P. C. R. Hebd. Seances Acad. Sci. 1955, 241: 1055 -
40b
Chodkiewicz W. Ann. Chim (Paris) 1957, 2: 819 - 41
Kamata K.Nakagawa Y.Yamaguchi K.Mizuno N.
J. Am. Chem. Soc. 2008, 130: 15304 - 42
Matthew P.Neels A.Albrecht M. J. Am. Chem. Soc. 2008, 130: 13534
References
Cu loading had been verified by scanning electron microscopy and quantified by elemental analysis (ICP-OES).