Synthesis 2010(9): 1557-1567  
DOI: 10.1055/s-0029-1218733
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart ˙ New York

Copper(I)-Zeolites as New Heterogeneous and Green Catalysts for Organic Synthesis

Stefan Chassaingd, Aurélien Alixa, Thirupathi Boningarib, Karim Sani Souna Sidoa,b, Murielle Kellerb, Philippe Kuhnb,c, Benoit Louisc, Jean Sommerb, Patrick Pale*a
a Laboratoire de Synthèse et Réactivité Organiques, Institut de Chimie de Strasbourg, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
Fax: +33(3)68851517; e-Mail: ppale@chimie.u-strasbg.fr; e-Mail: ppale@unistra.fr;
b Laboratoire de Physicochimie des Hydrocarbures, Institut de Chimie de Strasbourg, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
c Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse (UMR 7515 du CNRS), 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
d Laboratoire de Synthèse et Physicochimie de Molécules d’Intérêt Biologique (UMR 5068 du CNRS), Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
Further Information

Publication History

Received 23 December 2009
Publication Date:
12 April 2010 (online)

Abstract

We have evaluated the potential of CuI-doped zeolites as heterogeneous catalysts for organic synthesis. Such catalysts proved to be easy to prepare, handle, recover, and recycle. They could be applied to different synthetic applications, such as [3+2] cycloadditions of alkynes with either azides or azomethine imines and the homocoupling of alkynes. These interesting characteristics make them highly attractive as catalysts for organic chemists, especially with regard to aspects of ‘green chemistry’.

1 Introduction

2 Synthesis and Structures of CuI-Doped Zeolites

3 CuI-Zeolites as Catalysts in Organic Synthesis

3.1 Cycloadditions: ‘Click in Zeo’

3.2 Cascade Reactions: Substitution and Cycloaddition

3.3 Cycloadditions: Mechanistic Investigations

3.4 Homocoupling of Alkynes

4 Conclusion

    References

  • 1a Anastas PT. Warner JC. Green Chemistry: Theory and Practice   Oxford University Press; Oxford: 1998. 
  • 1b Green Chemistry: Frontiers in Benign Chemical Synthesis and Processes   Anastas P. Williamson TC. Oxford University Press; Oxford: 1998. 
  • 1c Green Chemistry: Challenging Perspectives   Tundo P. Anastas PT. Oxford University Press; Oxford: 1999. 
  • 1d Clark JH. Green Chem.  1999,  1:  1 
  • For recent examples with liquid superacids, see:
  • 2a Vasilyev A. Walspurger S. Haouas M. Pale P. Sommer J. Rudenko AP. Org. Biomol. Chem.  2004,  2:  3483 
  • 2b Vasilyev A. Walspurger S. Sommer J. Pale P. Tetrahedron  2005,  61:  3559 
  • 2c Vasilyev A. Walspurger S. Chassaing S. Pale P. Sommer J. Eur. J. Org. Chem.  2007,  5740 
  • For recent examples with solid superacids (i.e., zeolites), see:
  • 2d Sani Souna Sido A. Chassaing S. Kumarraja M. Pale P. Sommer J. Tetrahedron Lett.  2007,  48:  5911 
  • 2e Sani Souna Sido A. Chassaing S. Pale P. Sommer J. Appl. Catal., A  2008,  336:  101 
  • 2f Chassaing S. Kumarraja M. Pale P. Sommer J. Org. Lett.  2007,  9:  3889 
  • 3a Evano G. Blanchard N. Tourni M. Chem. Rev.  2008,  108:  3054 
  • 3b Modern Organocopper Chemistry   Krause N. Wiley-VCH; Weinheim: 2002. 
  • 3c Comprehensive Organometallic Chemistry III   Vols. 10 and 11:  Crabtree R. Mingos DMP. Elsevier; Oxford: 2006. 
  • 4 Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed.  2001,  40:  2004 
  • 5a Kallo D. Rev. Mineral. Geochem.  2001,  45:  519 
  • 5b Larsen SC. In Environmental Catalysis   Grassian VK. CRC Press; Boca Raton: 2005.  p.269 
  • 6a For a recent review, see: Berthomieu D. Delahay G. Catal. Rev.  2006,  48:  269 
  • 6b Delahay G. Coq B. Broussous L. Appl. Catal., B  1997,  12:  49 
  • 6c Nam I.-S, Yim SD, Baik JH, Oh SH, and Cho BK. inventors; WO  2004,108,264. 
  • 7 Han H.-S, and Kim E.-S. inventors; WO  2007,004,774. 
  • 8 Weitkamp J, Ernst S, Roeck H, Scheinost K, Hammer B, Goll W, and Michaud H. inventors; DE  4026364. 
  • 9 Chen HY. Chen L. Lin J. Tan KL. Li J. Inorg. Chem.  1997,  36:  1417 
  • 10a Drake IJ. Zhang Y. Briggs D. Lim B. Chau T. Bell AT. J. Phys. Chem. B  2006,  110:  11654 
  • 10b King ST. J. Catal.  1996,  161:  530 
  • 10c King ST. Catal. Today  1997,  33:  173 
  • 11 Kazansky VB. Pidko EA. Catal. Today  2005,  110:  281 
  • 12 Gomez-Lor B. Iglesias M. Cascales C. Gutierrez-Puebla E. Monge MA. Chem. Mater.  2001,  13:  1364 
  • 13a Spoto G. Zecchina A. Bordiga S. Richiardi G. Martra G. Appl. Catal., B  1994,  3:  151 
  • 13b Lamberti C. Bordiga S. Salvalaggio M. Spoto G. Zecchina A. Geobaldo F. Vlaic G. Bellatreccia M. J. Phys. Chem. B  1997,  101:  344 
  • 13c Li Z. Xie K. Slade RCT. Appl. Catal., A  2001,  209:  107 
  • 15 Kuhn P. Pale P. Sommer J. Louis B. J. Phys. Chem. C  2009,  113:  2903 
  • 16 Cycloaddition Reactions in Organic Synthesis   Kobayashi S. Jørgensen KA. Wiley-VCH; Weinheim: 2001. 
  • 17a Huisgen R. Szeimis G. Moebius L. Chem. Ber.  1967,  100:  2494 
  • 17b Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry   Padwa A. Wiley; New York: 1984.  p.1-176  
  • 17c Huisgen R. Pure Appl. Chem.  1989,  61:  613 
  • 18a Tornøe CW. Christensen C. Meldal M. J. Org. Chem.  2002,  67:  3057 
  • 18b Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 
  • For recent reviews, see:
  • 19a Bock VD. Hiemstra H. van Maarseveen JH. Eur. J. Org. Chem.  2006,  51 
  • 19b Moses JE. Moorhouse AD. Chem. Soc. Rev.  2007,  36:  1249 
  • 19c Lutz J.-F. Angew. Chem. Int. Ed.  2007,  46:  1018 
  • 19d Meldal M. Tornøe CW. Chem. Rev.  2008,  108:  2952 
  • 20a Dorn H. Otto A. Chem. Ber.  1968,  101:  3287 
  • 20b Dorn H. Otto A. Angew. Chem., Int. Ed. Engl.  1968,  7:  214 
  • 21 Shintani R. Fu GC. J. Am. Chem. Soc.  2003,  125:  10778 
  • 22 Vayssilov G. Quantum Chemical Modeling the Location of Extraframework Metal Cations in Zeolites, In Theoretical Aspect of Heterogeneous Catalysis   Vol. 8:  Springer; Heidelberg: 2002.  p.29-30  
  • 23 Chassaing S. Kumarraja M. Sani Souna Sido A. Pale P. Sommer J. Org. Lett.  2007,  9:  883 
  • 24 Keller M. Sani Souna Sido A. Pale P. Sommer J. Chem. Eur. J.  2009,  15:  2810 
  • 25 10 mol% of CuI-zeolite catalyst correspond to 10 mol% of CuI species as calculated from exchange of the acidic sites of the corresponding H-zeolite. For a recent method of determination of Brönsted acid sites on zeolites, see: Louis B. Walspurger S. Sommer J. Catal. Lett.  2004,  93:  81 
  • 26 Chassaing S. Sani Souna Sido A. Alix A. Kumarraja M. Pale P. Sommer J. Chem. Eur. J.  2008,  14:  6713 
  • 27a Lewandos GS. Maki JW. Ginnebaugh JP. Organometallics  1982,  1:  1700 
  • 27b Halbes-Letinois U. Pale P. Berger S. J. Org. Chem.  2005,  70:  9185 
  • 28 Deuterated zeolites were prepared through H/D exchange from native H-zeolites, according to : Haouas M. Walspurger S. Taulelle F. Sommer J. J. Am. Chem. Soc.  2004,  126:  599 
  • 29a Glaser C. Ber. Dtsch. Chem. Ges.  1869,  2:  422 
  • 29b Glaser C. Justus Liebigs Ann. Chem.  1870,  154:  137 
  • 30 Shi Shun ALK. Tykwinski RR. Angew. Chem. Int. Ed.  2006,  45:  1034 
  • 31a Gholami M. Tykwinski RR. Chem. Rev.  2006,  106:  4997 
  • 31b Morgan BJ. Xie X. Phuan PW. Kozlowski MC. J. Org. Chem.  2007,  72:  6171 
  • 32a Cataldo F. Polyynes: Synthesis, Properties and Applications   CRC Press; Boca Raton: 2005. 
  • 32b Diederich F. Stang PJ. Tykwinski RR. Acetylene Chemistry: Chemistry, Biology, and Material Science   Wiley-VCH; Weinheim: 2005. 
  • 33a Santoyo-Gonzalez F. Torres-Pinedo A. Sanchez-Ortega A. J. Org. Chem.  2000,  65:  4409 
  • 33b Chang K.-J. Chae MK. Lee C. Lee J.-Y. Jeong K.-S. Tetrahedron Lett.  2006,  47:  6385 
  • 33c Opris DM. Ossenbach A. Lentz D. Schlüter AD. Org. Lett.  2008,  10:  2091 
  • 34a Eglinton G. Galbraith AR. Chem. Ind. (London)  1956,  737 
  • 34b Eglinton G. Galbraith AR. J. Chem. Soc.  1959,  889 
  • 34c Hay AS. J. Org. Chem.  1962,  27:  3320 
  • 34d Rossi R. Carpita A. Bigelli C. Tetrahedron Lett.  1985,  26:  523 
  • 34e Siemsen P. Livingston RC. Diederich F. Angew. Chem. Int. Ed.  2000,  39:  2632 
  • 34f Adimurthy S. Malakar CC. Beifuss U. J. Org. Chem.  2009,  74:  5648 
  • 34g Li L. Wang J. Zhang G. Liu Q. Tetrahedron Lett.  2009,  50:  4033 
  • 35 Oishi T. Katayama T. Yamaguchi K. Mizuno N. Chem. Eur. J.  2009,  15:  7539 
  • 36 Kuhn P. Alix A. Kumarraja M. Louis B. Pale P. Sommer J. Eur. J. Org. Chem.  2009,  423 
  • 37 Derouane EG. From shape selective zeolites to zeozymes: confinement effects in sorption and catalysis by zeolites   First Francqui Colloquium; Brussels: 1996. 
  • 38 Roy R. Das SK. Hernández-Meteo F. Santoyo-González F. Gan Z. Synthesis  2001,  1049 
  • 39a Carbohydrates in Chemistry and Biology   Vols. 1-4:  Ernst B. Hart GW. Sinaÿ P. Wiley-VCH; Weinheim: 2000. 
  • 39b Glycoscience   Driguez H. Thiem J. Springer; Berlin: 1997. 
  • 39c Gruner SAW. Locardi E. Lohof E. Kessler H. Chem. Rev.  2002,  102:  491 
  • 39d Davis BG. Chem. Rev.  2002,  102:  579 
  • 40a Chodkiewicz W. Cadiot P. C. R. Hebd. Seances Acad. Sci.  1955,  241:  1055 
  • 40b Chodkiewicz W. Ann. Chim (Paris)  1957,  2:  819 
  • 41 Kamata K. Nakagawa Y. Yamaguchi K. Mizuno N.
    J. Am. Chem. Soc.  2008,  130:  15304 
  • 42 Matthew P. Neels A. Albrecht M. J. Am. Chem. Soc.  2008,  130:  13534 
14

Cu loading had been verified by scanning electron microscopy and quantified by elemental analysis (ICP-OES).