Subscribe to RSS
DOI: 10.1055/s-0029-1218528
Regioselective Pd(0)-Catalyzed Hiyama Cross-Coupling Reactions at Dihalo-Substituted Heterocycles
Publication History
Publication Date:
01 December 2009 (online)
Abstract
The regioselectivity of the Hiyama cross-coupling reaction at various dihalo-substituted heterocycles has been studied. Methyl 2,3-dibromo-5-furancarboxylate and n-octyltrifluorosilane were employed to find optimum reaction conditions [CsF; Pd2dba3/P(2-furyl)3 as catalyst, 80-150 ˚C in toluene or benzene] for the desired transformation. Subsequent experiments with the title compounds and with different primary alkyltrifluorosilanes illustrate the generality of this regiochemical process.
Key words
catalysis - cross-coupling - heterocycles - palladium - regioselectivity - silane
-
1a
Joule JA.Mills K. Heterocyclic Chemistry 4th ed.: Blackwell; Oxford: 2000. -
1b
Gilchrist TL. Heterocyclic Chemistry 3rd ed.: Longman; Harlow: 1997. -
1c
Eicher T.Hauptmann S. The Chemistry of Heterocycles 2nd ed.: Wiley-VCH; Weinheim: 2003. -
1d
Li JJ.Gribble GW. Palladium in Heterocyclic Chemistry Pergamon Press; Oxford: 2000. - For reviews, see:
-
2a
Schröter S.Stock C.Bach T. Tetrahedron 2005, 61: 2245 -
2b
Fairlamb IJS. Chem. Soc. Rev. 2007, 36: 1036 - 3
Bach T.Bartels M. Synthesis 2003, 925 -
4a
Matsuhashi H.Kuroboshi M.Hatanaka Y.Hiyama T. Tetrahedron Lett. 1994, 35: 6507 -
4b
Matsuhashi H.Asai S.Hirabayashi K.Hatanaka Y.Mori A.Hiyama T. Bull. Chem. Soc. Jpn. 1997, 70: 437 - For reviews, see:
-
5a
Hiyama T. in Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim: 1998. p.421-453 -
5b
Denmark SE.Sweis RF. in Metal-Catalyzed Cross-Coupling Reactions 2nd ed., Vol. 1:de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.163-216 -
6a
Strotman NA.Sommer S.Fu GC. Angew. Chem. Int. Ed. 2007, 46: 3556 -
6b
Dai X.Strotman NA.Fu GC. J. Am. Chem. Soc. 2008, 130: 3302 -
7a
Denmark SE.Choi JY. J. Am. Chem. Soc. 1999, 121: 5821 -
7b
Denmark SE.Wu Z. Org. Lett. 1999, 1: 1495 -
7c
Denmark SE.Sweis RF. Chem. Pharm. Bull. 2002, 50: 1531 -
7d
Denmark SE.Ober MH. Adv. Synth. Catal. 2004, 346: 1703 -
7e
Denmark SE.Regens CS. Acc. Chem. Res. 2008, 41: 1486 -
7f
Denmark SE.Werner NS. J. Am. Chem. Soc. 2008, 130: 16382 -
7g
Denmark SE.Smith RC.Chang W.-TT.Muhui JM. J. Am. Chem. Soc. 2009, 131: 3104 - 8
Bury P.Hareau G.Kocieński P.Dhanak D. Tetrahedron 1994, 50: 8793 - 9
Hatanaka Y.Hiyama T. Tetrahedron Lett. 1990, 31: 2719 -
11a
Bach T.Krüger L. Tetrahedron Lett. 1998, 39: 1729 -
11b
Bach T.Krüger L. Synlett 1998, 1185 -
11c
Bach T.Krüger L. Eur. J. Org. Chem. 1999, 2045 -
13a
Farina V.Krishnan B. J. Am. Chem. Soc. 1991, 113: 9585 -
13b
Amatore C.Jutand A.Meyer G.Atmani H.Khalil F.Chahdi FO. Organometallics 1998, 17: 2958 -
13c For a review, see:
Andersen NG.Keay BA. Chem. Rev. 2001, 101: 997 - 15 A guide for predicting regioselectivity
in cross-coupling reactions has been suggested, see:
Handy ST.Zhang Y. Chem. Commun. 2006, 299 - For Suzuki cross-coupling of 2,4-dibromopyridine, see:
-
16a
Sicre C.Alonso-Gómez J.-L.Cid MM. Tetrahedron 2006, 62: 11063 -
16b
Voisin-Chiret AS.Bouillon A.Burzicki G.Célant M.Legay R.El-Kashef H.Rault S. Tetrahedron 2009, 65: 607 - 17 For Pd-catalyzed amination of 2,4-dibromopyridine,
see:
Denhart DJ.Purandare AV.Catt JD.King HD.Gao A.Deskus JA.Poss MA.Stark AD.Torrente JR.Johnson G.Mattson RJ. Bioorg. Med. Chem. Lett. 2004, 14: 4249 -
18a
Damrauer R.Danahey SE. Organometallics 1986, 5: 1490 -
18b
Schraml J.Chvalovsk V.Mägi M.Lippmaa E. J. Organomet. Chem. 1973, 51: C5
References and Notes
Activating reagents were screened in the reaction of substrate 3 with n-octyltrifluorosilane in THF at 100 ˚C, employing Pd2dba3/P(2-furyl)3 as the catalyst. Almost no conversion was achieved with the given activating reagents, while anhydrous CsF delivered a significant conversion after 18 h (26% 4a, 34% 5).
12Other ligands that have been tested include tri-tert-butyl-phosphonium tetrafluoroborate (PtBu3˙HBF4), tricyclo-hexylphosphane (PCy3), 1,2-bis(diphenylphosphino)ethane (dppe), 1,2-bis(di-2-furylphosphino)ethane (dfpe), and 1,4-bis(diphenylphosphino)butane (dppb).
14Typical procedure: A flame-dried Schlenk tube was charged with Pd2dba3 (9.2 mg, 0.01 mmol), P(2-furyl)3 (18.6 mg, 0.08 mmol) and benzene (2 mL) under an atmosphere of argon. The solution was stirred at r.t. for 15 min then n-octyltrifluorosilane (74 µL, 0.40 mmol) and CsF (122 mg, 0.80 mmol, which was stored and weighed in a glove box) were added, followed by dibromofuran 3 (56.8 mg, 0.20 mmol). The tube was closed with a Teflon screw plug, situated behind an explosion shield (CAUTION!), heated to 80 ˚C and stirred for 15 h. The reaction mixture was cooled to room temperature and diluted with EtOAc (5 mL) and H2O (5 mL). After separation of the layers, the aqueous phase was extracted with EtOAc (3 × 5 mL) and the combined organic layers were dried over Na2SO4 and concentrated in vacuo. Purification of the crude product by flash column chromatography (silica gel; pentane-Et2O, 99:1) yielded compound 4a (45.6 mg, 0.14 mmol, 72%) as a colorless liquid. ¹H NMR (500 MHz, CDCl3): δ = 0.88 (t, ³ J = 7.0 Hz, 3 H), 1.20-1.36 (m, 10 H), 1.68 (quint, ³ J = 7.5 Hz, 2 H), 2.70 (t, ³ J = 7.5 Hz, 2 H), 3.88 (s, 3 H), 7.11 (s, 1 H); ¹³C NMR (90.6 MHz, CDCl3): δ = 14.1, 22.6, 26.5, 27.5, 29.0, 29.1, 29.1, 31.8, 52.0, 97.9, 121.2, 142.6, 158.3, 158.5; HRMS: m/z calcd for C14H21BrO3: 316.0674; found: 316.0673.