Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(16): 1647-1651
DOI: 10.1055/a-1523-3228
DOI: 10.1055/a-1523-3228
cluster
Modern Nickel-Catalyzed Reactions
Nickel-Catalyzed Regiodivergent Reductive Hydroarylation of Styrenes
Support was provided by the National Natural Science Foundation of China (NSFC, Grant Numbers 21772087 and 22001118) and the Natural Science Foundation of Jiangsu Province (Grant Numbers BK20200300 and BK20201245).
Abstract
We report a ligand-controlled nickel-catalyzed reductive hydroarylation of styrenes with predictable and controllable regioselectivity. With a diamine ligand, the reaction produces selective linear hydroarylation products. Alternatively, with a chiral PyrOx ligand, branch-selective enantioenriched 1,1-diarylalkane products are obtained. Preliminary mechanistic results are consistent with a reductive Heck process.
Key words
asymmetric catalysis - hydroarylation - nickel catalysis - reductive Heck - regiodivergence - styreneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1523-3228.
- Supporting Information
Publication History
Received: 04 May 2021
Accepted after revision: 05 June 2021
Accepted Manuscript online:
05 June 2021
Article published online:
23 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Xiao L.-J, Cheng L, Feng W.-M, Li M.-L, Xie J.-H, Zhou Q.-L. Angew. Chem. Int. Ed. 2018; 57: 461
- 1b Chen Y.-G, Shuai B, Xu X.-TLi Y.-Q, Yang Q.-L, Qiu H, Zhang K, Fang P, Mei T.-S. J. Am. Chem. Soc. 2019; 141: 3395
- 1c Lv X.-Y, Fan C, Xiao L.-J, Xie J.-H, Zhou Q.-L. CCS Chem. 2019; 1: 328
- 1d He Y, Liu C, Yu L, Zhu S. Angew. Chem. Int. Ed. 2020; 59: 9186
- 1e Tran HN, Burgett RW, Stanley LM. J. Org. Chem. 2021; 86: 3836
- 1f Iwai Y, Gligorich KM, Sigman MS. Angew. Chem. Int. Ed. 2008; 47: 3219
- 1g Podhajsky SM, Iwai Y, Cook-Sneathen A, Sigman MS. Tetrahedron 2011; 67: 4435
- 2a He Y, Cai Y, Zhu S. J. Am. Chem. Soc. 2017; 139: 1061
- 2b Chen F, Chen K, Zhang Y, He Y, Wang Y.-M, Zhu S. J. Am. Chem. Soc. 2017; 139: 13929
- 2c Kumar GS, Peshkov A, Brzozowska A, Nikolaienko P, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 6513
- 2d He Y, Liu C, Yu L, Zhu S. Angew. Chem. Int. Ed. 2020; 59: 21530
- 2e Semba K, Ariyama K, Zheng H, Kameyama R, Sakaki S, Nakao Y. Angew. Chem. Int. Ed. 2016; 55: 6275
- 2f Friis SD, Pirnot MT, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 8372
- 3a Messaoudi S, Hamze A, Provot O, Tréguier B, Rodrigo De Losada J, Bignon J, Liu J.-M, Wdzieczak-Bakala J, Thoret S, Dubois J, Brion J.-D, Alami M. ChemMedChem 2011; 6: 488
- 3b Moree WJ, Li B.-F, Jovic F, Coon T, Yu J, Gross RS, Tucci F, Marinkovic D, Zamani-Kord S, Malany S, Bradbury MJ, Hernandez LM, O’Brien Z, Wen J, Wang H, Hoare SR. J, Petroski RE, Sacaan A, Madan A, Crowe PD, Beaton G. J. Med. Chem. 2009; 52: 5307
- 3c Chubb NA. L, Cox MR, Dauvergne JS, Ewin RA, Lauret C. US 20070167506, 2007
- 4a Pirnot MT, Wang Y.-M, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 48
- 4b Nguyen KD, Park BY, Luong T, Sato H, Garza VJ, Krische MJ. Science 2016; 354: 300
- 4c Eberhardt NA, Guan H. Chem. Rev. 2016; 116: 8373
- 4d Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
- 4e Chen J, Guo J, Lu Z. Chin. J. Chem. 2018; 36: 1075
- 4f Wang X.-X, Lu X, Li Y, Wang J.-W, Fu Y. Sci. China: Chem. 2020; 63: 1586
- 5a Qin X, Lee MW. Y, Zhou JS. Angew. Chem. Int. Ed. 2017; 56: 12723
- 5b Yang F, Jin Y, Wang C. Org. Lett. 2019; 21: 6989
- 5c Huang X, Teng S, Chi YR, Xu W, Pu M, Wu Y.-D, Zhou JS. Angew. Chem. Int. Ed. 2021; 60: 2828
- 6a Netherton MR, Fu GC. Adv. Synth. Catal. 2004; 346. 1525
- 6b Hu X. Chem. Sci. 2011; 2: 1867
- 6c Montgomery J. Organonickel Chemistry . In Organometallics in Synthesis . Lipshutz BH. John Wiley & Sons; Hoboken: 2013: 319-428
- 6d Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 6e Nickel Catalysis in Organic Synthesis . Ogoshi S. Wiley-VCH; Weinheim: 2020
- 6f Poremba KE, Dibrell SE, Reisman SE. ACS Catal. 2020; 10: 8237
- 7a Green SA, Matos JL. M, Yagi A, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 12779
- 7b Shevick SL, Obradors C, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 12056
- 7c Pang X, Zhao Z.-Z, Wei X.-X, Qi L, Xu G, Duan J, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 4536
- 8a Wang Z, Yin H, Fu GC. Nature 2018; 563: 379
- 8b He S.-J, Wang J.-W, Li Y, Xu Z.-Y, Wang X.-X, Lu X, Fu Y. J. Am. Chem. Soc. 2020; 142: 214
- 8c Yang Z.-P, Fu GC. J. Am. Chem. Soc. 2020; 142: 5870
- 8d Bera S, Mao R, Hu X. Nat. Chem. 2021; 13: 270
- 8e Liu J, Gong H, Zhu S. Angew. Chem. Int. Ed. 2021; 60: 4060
- 8f Shi L, Xing L.-L, Hu W.-B, Shu W. Angew. Chem. Int. Ed. 2021; 60: 1599
- 8g Cuesta-Galisteo S, Schörgenhumer J, Wei X, Merino E, Nevado C. Angew. Chem. Int. Ed. 2021; 60: 1605
- 8h He Y, Song H, Zhu S. Nat. Commun. 2021; 12: 638
- 8i Qian D, Bera S, Hu X. J. Am. Chem. Soc. 2021; 143: 1959
- 8j Wang J.-W, Li Y, Nie W, Chang Z, Yu Z.-A, Zhao Y.-F, Lu X, Fu Y. Nat. Commun. 2021; 12: 1313
- 8k Wang X.-X, Yu L, Lu X, Zhang Z.-L, Liu D.-G, Tian C, Fu Y. CCS Chem. 2021; 3: 727
- 8l Wang S, Zhang T.-Y, Zhang J.-X, Meng H, Chen B.-H, Shu W. ChemRxiv 2020; preprint
- 8m Jiang X, Han B, Xue Y, Duan M, Gui Z, Wang Y, Zhu S. ChemRxiv 2021; preprint
- 8n Zhou F, Zhu S. ChemRxiv. 2021; preprint
- 9a Cheng L, Li M.-M, Xiao L.-J, Xie J.-H, Zhou Q.-L. J. Am. Chem. Soc. 2018; 140: 11627
- 9b Marcum JS, Taylor TR, Meek SJ. Angew. Chem. Int. Ed. 2020; 59: 14070
- 9c Shao W, Besnard C, Guénée L, Mazet C. J. Am. Chem. Soc. 2020; 142: 16486
- 9d Yu R, Rajasekar S, Fang X. Angew. Chem. Int. Ed. 2020; 59: 21436
- 10a Lu X, Xiao B, Zhang Z, Gong T, Su W, Fu Y, Liu L. Nat. Commun. 2016; 7: 11129
- 10b Diesel J, Finogenova AM, Cramer N. J. Am. Chem. Soc. 2018; 140: 4489
- 10c Lv H, Xiao L.-J, Zhao D, Zhou Q.-L. Chem. Sci. 2018; 9: 6839
- 10d Loup J, Müller V, Ghorai D, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 1749
- 10e Nguyen J, Chong A, Lalic G. Chem. Sci. 2019; 10: 3231
- 10f Zhang W.-B, Yang X.-T, Ma J.-B, Su Z.-M, Shi S.-L. J. Am. Chem. Soc. 2019; 141: 5628
- 10g Saper NI, Ohgi A, Small DW, Seba K, Nakao Y, Hartwig JF. Nat. Chem. 2020; 12: 276
- 10h Wang D.-M, Feng W, Wu Y, Liu T, Wang P. Angew. Chem. Int. Ed. 2020; 59: 20399
- 11a Torii S, Tanaka H, Morisaki K. Chem. Lett. 1985; 14: 1353
- 11b Jin L, Qian J, Sun N, Hu B, Shen Z, Hu X. Chem. Commun. 2018; 54: 5752
- 11c Oxtoby LJ, Li Z.-Q, Tran VT, Erbay TG, Deng R, Liu P, Engle KM. Angew. Chem. Int. Ed. 2020; 59: 8885
- 11d Yang X.-W, Li D.-H, Song A.-X, Liu F.-S. J. Org. Chem. 2020; 85: 11750
- 11e Zhou F, Hu X, Zhang W, Li C.-J. J. Org. Chem. 2018; 83: 7416
- 12a Friis SD, Pirnot MT, Dupuis LN, Buchwald SL. Angew. Chem. Int. Ed. 2017; 56: 7242
- 12b Boyington AJ, Riu M.-LY, Jui NT. J. Am. Chem. Soc. 2017; 139: 6582
- 12c Lu Z, Buchwald SL. Angew. Chem. Int. Ed. 2020; 59: 16128
- 12d Wang C, Xiao G, Guo T, Ding Y, Wu X, Loh T.-P. J. Am. Chem. Soc. 2018; 140: 9332
- 13 For an elegant example of ligand-controlled regiodivergent hydroarylation of terminal alkenes, see: Li Z.-Q, Fu Y, Deng R, Tran VT, Gao Y, Liu P, Engle KM. Angew. Chem. Int. Ed. 2020; 59: 23306
- 14 1-Methoxy-4-phenethylbenzene (3a) – General Procedure A In a nitrogen-filled glove box, to an oven-dried 8 mL screw-cap vial equipped with a magnetic stir bar were added NiBr2·3H2O (2.73 mg, 0.010 mmol, 5 mol%), L1 (2.55 mg, 0.012 mmol, 6 mol%), CsF (60.8 mg, 0.40 mmol, 2.0 equiv), and 0.40 mL anhydrous THF. The mixture was stirred for 5 min, at which time PMHS (30 μL, 0.50 mmol, 2.5 equiv) was added, and the stirring was continued for another 5 min at r.t. Styrene (1a, 31.2 mg, 0.30 mmol, 1.5 equiv) and 4-methoxyphenyl trifluoromethanesulfonate (2a, 51.2 mg, 0.20 mmol, 1.0 equiv) were added to the resulting mixture in this order. The tube was sealed with a Teflon-lined screw cap, removed from the glove box and stirred at 25 °C for up to 24 h. The reaction was quenched upon the addition of H2O, and the mixture was extracted with EtOAc (3 ×). The organic layer was concentrated to give the crude product. n-Dodecane (20 μL) was added as an internal standard for GC analysis. The product was purified by chromatography on silica gel for each substrate. The crude material was purified by flash column chromatography (PE–EtOAc = 100:1) to provide the title compound as a white solid in 85% yield (36.0 mg). The analytical data are consistent with values reported in the literature.10e
- 15 (S)-1-Methoxy-4-(1-phenylethyl)benzene (4a) – General Procedure B In a nitrogen-filled glove box, to an oven-dried 8 mL screw-cap vial equipped with a magnetic stir bar were added NiCl2·glyme (2.20 mg, 0.010 mmol, 5 mol%), L4 (4.27 mg, 0.012 mmol, 6 mol%), K3PO4·H2O (92.1 mg, 0.40 mmol, 2.0 equiv), methanol (3.2 mg, 0.10 mmol, 0.5 equiv), and mixed solvent (Et2O–toluene = 3:1, 0.40 mL). The reaction mixture was stirred for 5 min, at which time PMHS (30 μL, 0.50 mmol, 2.5 equiv) was added, and the stirring was continued for another 5 min at r.t. Styrene (1a, 31.2 mg, 0.30 mmol, 1.5 equiv) and 4-methoxyphenyl trifluoromethanesulfonate (2a, 51.2 mg, 0.20 mmol, 1.0 equiv) were added to the resulting mixture in this order. The tube was sealed with a Teflon-lined screw cap, removed from the glove box and stirred at 0 °C for up to 24 h. The reaction was quenched upon the addition of H2O, and the mixture was extracted with EtOAc (3 ×). The organic layer was concentrated to give the crude product. n-Dodecane (20 μL) was added as an internal standard for GC analysis. The crude material was purified by flash column chromatography (PE–EtOAc = 100:1) to provide the title compound as a colorless oil in 55% yield (23.3 mg), 94:6 rr. HPLC analysis (OJ-H, 5% i PrOH/hexane, 1.0 mL/min, 220 nm) indicated 95% ee, t R (major) = 16.9 min, t R (minor) = 18.1 min. The analytical data are consistent with values reported in the literature.2f
- 16 Under branch-selective reaction conditions, when (Bpin)2 was used instead of PMHS, the regioreversed arylboration product was obtained in 36% yield, 94:6 rr, 94% ee.
- 17 For similar Heck-type reaction, see: Chen L.-A, Lear AR, Gao P, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 10956
For NiH-catalyzed branched redox-neutral hydroarylation of styrenes, see:
For PdH-catalyzed branched redox-neutral hydroarylation of styrenes, see:
For NiH-catalyzed branched reductive hydroarylation of styrenes, see:
For CuH-catalyzed branched reductive hydroarylation of styrenes, see:
For selected reviews on metal-hydride chemistry, see:
For Ni-catalyzed reductive Heck reaction, see:
For selected reviews on nickel catalysis, see:
For NiH-catalyzed branched hydroarylation of unactivated alkenes, see:
For NiH-catalyzed branch-selective reductive hydrovinylation of 1,3-dienes, see:
For other type of NiH-catalyzed asymmetric reductive hydrofunctionalizations, see:
For other type of NiH-catalyzed asymmetric redox-neutral hydrofunctionalizations, see:
For NiH-catalyzed linear-selective hydroarylation of alkenes, see:
For selected examples of Pd-catalyzed linear reductive Heck reaction of styrenes, see:
For Cu-catalyzed linear radical reductive arylation of styrenes, see:
For other selected examples of linear hydroarylation of terminal alkenes, see: