Planta Med 2003; 69(3): 193-201
DOI: 10.1055/s-2003-38494
Review
© Georg Thieme Verlag Stuttgart · New York

Recent Development of Antitumor Agents from Chinese Herbal Medicines. Part II. High Molecular Compounds[3]

Weici Tang1 , Ingrid Hemm1 , Barbara Bertram2
  • 1Division of Food Chemistry and Environmental Toxicology, Department of Chemistry, University of Kaiserslautern, Germany
  • 2Division of Toxicology and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany
Further Information

Dr. Barbara Bertram

Div. Toxicology and Cancer Risk Factors

Deutsches Krebsforschungszentrum

D-69120 Heidelberg

Phone: +49 (0)6221 423030

Fax: +49 (0)6221 423031

Email: b.bertram@dkfz.de

Publication History

Received: May 27, 2002

Accepted: December 22, 2002

Publication Date:
04 April 2003 (online)

Table of Contents #

Abstract

High molecular compounds from Chinese herbal medicines, including ribosome-inactivating proteins and polysaccharides from both fungi and high plants have been tested for the treatment of malignant diseases. Polysaccharides possessing immunostimulating activities can be used as adjuvants in tumor treatment. The fungi containing such polysaccharides are usually edible mushrooms or tonics in Traditional Chinese Medicine. Parts from high plants such as Radix Astragali and Fructus Lycii containing polysaccharides are mainly used as tonic in Traditional Chinese Medicine. Ribosome-inactivating proteins are a group of proteins exerting cytotoxic activities via inhibition of protein synthesis. Some of the ribosome-inactivating proteins have been used as the cytotoxic part in conjugates with monoclonal antibodies as tumor-targeting drugs. The cytotoxic and antineoplastic mechanisms of the high molecular compounds are rather different from those of the low molecular compounds described in part I.

#

Dedication

In memory of Prof. Dr. Hans Beyer, Prof. Dr. Roland Pohloudek-Fabini and Prof. Dr. Werner Rothmaler, Ernst-Moritz-Arndt University, Greifswald, Germany

#

Introduction

Besides the low molecular compounds from Chinese herbal medicines as antineoplastic and cytotoxic agents (see “Recent Development of Antitumor Agents from Chinese Herbal Medicines” Part I, Planta Medica 2003; 69: 97 - 108), some high molecular compounds were isolated from Chinese herbal medicines and were used for the treatment of malignant diseases. Among the high molecular compounds, polysacharides and ribosome-inactivating proteins are of special interest. Polysaccharides from fungi and higher plants exhibiting immunostimulating effects were tested both in experimental and clinical studies. Ribosome-inactivating proteins are a group of proteins which are able to inactivate eukaryotic protein synthesis by attacking the 28S ribosomal RNA. They have been tested experimentally and clinically in the treatment of tumors both as single compounds and as conjugates bound to antibodies. In the present part, a summary of the recent advances in the study and use of polysaccharides and ribosome-inactivating proteins from Chinese herbal medicines for the treatment of tumors is given.

#

Polysaccharides

#

Fungal polysaccharides

A number of polysaccharides from fungi were reported to possess immunostimulating and antitumor effects [1], [2]. Lentinan from Lentinus edodes (Berk.) Sing. (Tricholomataceae) is one of the most thoroughly studied fungal polysaccharides. Lentinus edodes is a common edible mushroom in China and in Japan. Lentinan was first isolated by Chihara [3]. It is a (1→ 3)-β-glucan highly branched with (1→ 3)-β- and (1→ 6)-β-linked glucose residues existing mainly as linear triple-helical structures in aqueous solution. Lentinan has a molecular weight of about 500 kDa [4], [5].

A multi-center prospective study of lentinan used in combination with cytostatic agents in patients with advanced unresectable and recurrent gastric cancer revealed survival prolongation and improvement in life quality. Median survival time of patients treated with lentinan was significantly longer than that of patients without lentinan treatment (297 days vs. 199 days) [6]. Lentinan at a daily i.v. dosage of 2 mg per patient combined with 5′-deoxy-5-fluorouridine [7], cisplatin, 5-FU [8] and tegafur [9] was effectively used for postoperative therapy of gastric cancer. An increase of more than 50 % IL-1β production in the peripheral blood of gastric cancer patients associated with lentinan treatment was observed [10], [11] as well as an enhanced induction of lymphokine-activated NK cell activity [12]. Addition of lentinan to maintenance therapy with 5-FU did not exert prognostic benefit on hepatocellular carcinoma patients [13].

Lentinan exhibited significant immunostimulating effects and showed antitumor activities also in experimental animals, augmenting helper T cell-mediated cytotoxic T cell activity, NK cell activity and humoral immune responses. Moreover, lentinan activated non-specific cytotoxicity of macrophages in vitro [14] and in vivo [15]. The beneficial effects of lentinan on cellular immune function were also observed in cyclophosphamide-treated mice [5]. Among the cytokine genes, the mRNA levels of IL-1α, IL-1β, TNF-α, IFN-γ and macrophage colony-stimulating in mouse peritoneal cells and splenocytes were markedly induced by lentinan [16]. Combinatory use of 5′-deoxy-5-fluorouridine and lentinan against AH66 ascites hepatoma cells in rats resulted in a significant inhibition of tumor growth as compared with 5′-deoxy-5-fluorouridine alone. Lentinan induced pyrimidine nucleoside phosphorylase activity in the tumor and increased the susceptibility of tumor cells to 5′-deoxy-5-fluorouridine [17]. Lentinan decreased glutathione-S-transferase GST-II and GST-III contents in colon 26 adenocarcinoma tissues transplanted into mice and enhanced the susceptibility of tumor to cisplatin [18]. β-(1→ 3)-Glucans were reported to be more effective on T cells than B cells [19]. It was also suggested that lentinan affects the tumorous vascular system resulting in the induction of hemorrhagic necrosis which is dependent on T cells in the tumor [20], [21]. In addition, the binding of lentinan to human monocytes may initiate the influence of this compound on the immune system and differ between individuals [22].

Intraperitoneal treatment of mice with lentinan at a dose of 10 mg/kg affected the number, plastic-adherence, and endogen peroxidase activity of peritoneal cells. Lentinan-stimulated peritoneal macrophages exerted cytotoxicity against several murine and human metastatic tumors, including Lewis lung carcinoma and two human melanomas [23]. Peritoneal carcinomatoses induced in BDIX rats by i.p. injections of syngeneic cells from a colon carcinoma cell line, treated with lentinan (five i.p. injections, 2 days apart at a daily dose of 2 mg/kg, starting on day 14 after tumor cell injection) significantly inhibited the growth of carcinomatoses and increased the life span of the animals [24]. Oral administration of L. edodes mycelia to mice suppressed postoperative liver metastasis of primary colorectal cancer and increased the survival period, elevating the activities of NK cells and macrophages in the liver and increasing IL-1β levels in liver and spleen [25]. Combined use of lentinan and IL-2 was found to result in synergistic antitumor and antimetastatic effects in mice against spontaneously metastatic 3-methylcholanthrene-induced fibrosarcoma [26].

Lentinan is relatively non-toxic. The LD50 values of lentinan in mice (ICR) and rats (CD) are essentially the same regardless of species and sex and are estimated to be 250 - 500 mg/kg by i.v. administration and greater than 2500 mg/kg by i.p., s.c., and oral administration. No remarkable toxic signs specific to lentinan were observed after i.p., s.c., and oral treatment whereas cyanosis, convulsion and death were observed in animals administered i.v. with higher dosages of lentinan [27].

Krestin (PSK) [28], a protein-bound β-glucan containing approximately 25 % protein; and PSP [29], a polysaccharide peptide, were isolated from CM-101 strain and COV-1 strain, respectively, of Coriolus versicolor (Fr.) Quel. (Polyporaceae). PSP possesses a molecular weight of approximately 100 kDa. Glutamic and aspartic acids are abundant in its polypeptide component, its polysaccharide component is composed of monosaccharides with α-(1→ 4)- and β-(1→ 3) glucosidic linkages. The presence of fucose in PSK and rhamnose and arabinose in PSP distinguishes the two protein-bound polysaccharides, which are otherwise chemically similar [1].

In Japanese trials carried out since 1970, krestin significantly extended the five-year survival in cancers of the stomach, colon-rectum, esophagus, nasopharynx, lung (non-small cell), and in a HLA B40-positive breast cancer subset [1]. However, a retrospective study on 963 Japanese patients with gastric cancer of postoperative survival treated with or without PSK showed no significant differences as compared to untreated patients at any stage [30]. PSP, subjected to Phase II and Phase III double-blind trials in China, significantly extended five-year survival time in esophageal cancer. Moreover, it significantly improved life quality, provided substantial pain relief, and enhanced immune status in 70 % - 97 % of patients with cancers of the stomach, esophagus, lung, ovary, and cervix [1].

In experimental studies, krestin was reported to exert a preventive effect on spontaneously developed carcinogenesis as well as on carcinogen- or radiation-induced tumors [31]. Krestin prolonged the survival time of SD rats bearing mammary tumors induced by N-methyl-N-nitrosourea, when given at a dose of 250 mg/kg twice a week for 3 weeks [32]. Moreover, it inhibited the growth of LLC-WRC-256 (Walker 256 fibrosarcoma) cells, H4-II-E (rat hepatoma) and of H4-II-E-C3 (rat hepatoma) cells in vitro at a concentration of 500 μg/ml [33]. Krestin enhanced the cytotoxicity of cisplatin toward H4-II-E and human ovarian cancer cells [34] and stimulated the production of IL-1 by human peripheral blood mononuclear cells [35]. The combined use of krestin with granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor and IL-3 led to an improved recovery of myelosuppression in BDF1 mice induced by an i.v. administration of 5-FU (150 mg/kg) [36].

Obviously, krestin has also antimetastatic effects since it was reported to suppress pulmonary metastasis of methylcholanthrene-induced sarcomas, human prostate cancer DU145M and mouse melanoma cells and lymphatic metastasis of mouse leukemia P388. The survival time of tumor-bearing animals in spontaneous metastasis models was prolonged. Krestin also inhibited metastasis of rat hepatoma AH60C, mouse colon cancer colon 26, and mouse leukemia RL male 1 in artificial metastasis models. The antimetastatic effect of krestin is suggested to depend on different mechanisms: suppressed tumor invasion, adhesion and production of cell matrix-degrading enzymes, suppression of tumor cell attachment to endothelial cells by the inhibition of tumor cell-induced platelet aggregation, suppression of tumor cell migration after extravasation through the inhibition of tumor cell motility, and, finally, suppression of tumor growth after extravasation through the inhibition of angiogenesis, modulation of cytokine production, and augmentation of effector cell functions [37], [38], [39].

In addition, krestin was reported to enhance selenium-dependent and selenium-independent glutathione peroxidase (GST) activity, and to increase selenium-dependent glutathione peroxidase and GST-P mRNA expression in mouse peritoneal macrophages [40]. Krestin also enhanced manganese superoxide dismutase activity and its mRNA expression in mouse peritoneal macrophages [41]. Krestin was further reported to up-regulate inducible nitric oxide synthase (iNOS) gene expression and nitric oxide production in mouse peritoneal polymorphonuclear leukocytes. The stimulated production of nitric oxide in combination with IFN-γ may regulate the immune system in vivo [42].

PSP did not show cytotoxicity against tumor cell lines and mouse peritoneal macrophages in vitro at concentrations of 2.5 - 10 μg/ml. It activated the transcription of TNF gene in these cells, indicating that PSP exerted an immunomodulatory effect on the defensive cells [43]. Both mouse lymphocytes and macrophages were activated by preparations of polysaccharide from cultured mycelia and culture medium of C. versicolor [29]. PSP as a biological response modifier induced the production of IFN-α, IFN-γ, IL-2, and induced T cell proliferation. It counteracted the depressive effect of cyclophosphamide on leukocyte count [44] and showed a restorative effect against spleen injury in mice induced by γ-irradiation [45]. At a daily i.p. dose of 25 mg/kg to mice for 5 days, PSP antagonized the inhibition of IL-2 production by cyclophosphamide from activated T lymphocytes and restored the suppressed T cell-mediated delayed type hypersensitivity response to normal values. The lymphocyte proliferation in vitro was also stimulated by incubation with PSP at concentrations of 100 - 800 μg/ml. Moreover, PSP increased the phagocytic functions of the host reticulo-endothelial system [46]. PSP given s.c. to BALB/c mice inoculated s.c. with H238 tumor, a murine tumor transformed by herpes virus type 2, at a dose of 2 mg per mouse for 10 days significantly inhibited tumor progression when given immediately after tumor cell injection [47].

A refined polysaccharide peptide fraction from PS was reported to concentration-dependently inhibit the proliferation of the human hepatoma cell line HEPG2 with an IC50 value of 243 μg/ml after an exposure of three days. However, little or no inhibitory effects of the refined polysaccharide peptide were observed on the proliferation of normal human fetal hepatocytes. In tumor-bearing nude mice, 5 days after inoculation with S180 cells, i.v. administration of refined polysaccharide peptide significantly suppressed the growth of S180 cells with an inhibition rate of more than 93 % on day 13. Intraperitoneal preptreatment of nude mice with the refined polysaccharide peptide for two weeks before S180 cell inoculation led to a lower incidence of tumor growth than in control mice without polysaccharide pretreatment. The tumor size of the control group was about 3 - 5 times bigger than that of animals with polysaccharide pretreatment. The refined polysaccharide peptide did not cause any pathological lesions in vital organs of rabbits such as heart, liver, spleen, lung and kidney [48].

Further fungal polysaccharides with immunostimulating and antitumor activities have been isolated from Auricularia auricula (L. ex Hook) Underw. (Auriculariaceae) [49], Armillariella tabescens (Scop. ex Fr.) Sing (Tricholomataceae) [50], Ganoderma lucidum Leys. ex Fr.) Karst. (Polyporaceae) [51], Polyporus umbellatus (Pers.) Fries (Polyporaceae) [52], [53], [54], Poria cocos (Schw.) Wolf (Polyporaceae) [55], [56] and Tremella fuciformis Berkely (Tremellaceae) [57], [58], [59]. Ganoderma (Lingzhi); the fruiting body of G. lucidum; Poria (Fuling), the sclerotium of P. cocos; and Polyporus (Zhuling), the fungal body of P. umbellatus, are all listed in the Chinese Pharmacopoeia.

#

Polysaccharides from higher plants

Radix Astragali (Huangqi), the root of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. (Fabaceae), listed in the Chinese Pharmacopoeia, is used as a general tonic in Traditional Chinese Medicine since ancient time. A series of polysaccharides such as astragalans I - III, AG-I, AG-II, AH-I, AH-II, Amem-P and Amon-S were isolated from the roots of A. membranaceus or of A. membranaceus var. mongholicus [60], [61], [62], [63]. Astragalan I is composed of D-glucose, D-galactose, and L-arabinose in addition to trace amounts of pentose with an average molecular weight of 36.3 kDa. The sugar component in both astragalans II and III is D-glucose. The average molecular weights of astragalans II and III are 12.3 kDa and 34.6 kDa, respectively. Astragalan II and astragalan III consist mainly of α(1→ 4)-linked glucopyranosyl residues and a small amount of α(1→ 6)-linked glucopyranosyl residues [61]. AG-1 is an α-glucan with α(1→ 4) and α(1→ 6) linkages, while AG-2 is an α(1→ 4)-glucan. The component sugars in AH-1 were identified as galacturonic acid, glucuronic acid, glucose, rhamnose, and arabinose, those in AH-2 as glucose and arabinose [62]. Amon-S is composed of L-arabinose, D-galactose, D-galacturonic acid and D-glucuronic acid, in addition to small amounts of O-acetyl groups and a peptide moiety [63].

An extract of the root of A. membranaceus was reported to exert immunostimulating activities in various test systems enhancing the NK activity of lymphocyte effector cells and acting synergistically with partially purified human IFN-α [65]. Another extract of the root was reported to significantly enhance the activity of IL-2, of B cell growth factor and IL-6 in vitro and of phytohemagglutinin-induced proliferation of T lymphocytes from patients with IgG subclass deficiency [66]. The administration of a polysaccharide fraction of A. membranaceus, which consists mainly of astragalans I and II, to mice at a daily dose of 1 g/kg i.p. for 6 days stimulated humoral immune functions and restored immunosuppression of mice caused by prednisolone and cyclophosphamide [67], [68]. After i.p. administration, the extract increased weight and cell number of mouse spleen, elevated the response of mouse spleen against sheep red blood cells, and stimulated the phagocytic activity of peritoneal macrophages [69]. Astragalans enhanced the secretion of TNF from human peripheral blood mononuclear cells in vitro [70].

The aqueous extract of the root of A. membranaceus was reported to inhibit the DNA synthesis in ovarian mucinous cystadenoma and ovarian papillary cystadenoma cells in a dose- and time-dependent manner [71]. Ten days following tumor cell transplantation an i.p. treatment with the extract inhibited the growth of murine renal cell carcinoma in BALB/c mice. The cure rate was 57 % when the initial tumor load was 2 × 105 cells and 100 % when the initial tumor load was 1 × 105 cells. Splenocytes from mice transplanted with renal carcinoma cells responded less favorably to IL-2 in generating lymphokine-activated killer cells; this depression was restored after treatment with Astragalus extract. It was suggested that A. membranaceus may exert its antitumor effect via augmentation of phagocyte and lymphokine-activated NK cell activities [72], [73]. The root of A. membranaceus was reported to be used as clinical adjuvant in radiotherapy or chemotherapy of cancer, such as small cell lung cancer [74]. A significant immunorestorative activity of the polysaccharide fraction with an increased local xenogeneic graft-versus-host reaction and blastogenic response of lymphocytes in vitro were also observed in mononuclear cells from cancer patients [75], [76].

Fructus Lycii (Gouqizi), the ripe fruit of Lycium barbarum L. (Solanaceae), is a further Chinese herbal medicine containing polysaccharides with immunostimulating and antitumor activities. It is listed in the Chinese Pharmacopoeia and is used as a general tonic. A number of peptidoglycans has been isolated from the fruit [77], [78], [79]. The polysaccharide content in different samples of L. barbarum ranges from 5 % to 8 % [80]. The fruit extract extensively increased the expression of the IL-2 receptor (α- and β-chains) on the membrane of tonsillar mononuclear cells [81]. Lycium barbarum polysaccharides increased the weight of spleen and thymus, and reticuloendothelial phagocytosis in normal mice [82]. They enhanced the IL-2 activity from aged mice (16 months) to the same extent as that of adult mice (2 months) [83].

The polysaccharides from L. barbarum fruits significantly enhanced the membrane PKC activity of rabbit red blood cells at a concentration of 100 μg/ml [84]. At concentrations of 50 - 400 μg/ml, the polysaccharide increased both the cellular cAMP and cGMP levels in mouse lymphocytes in a concentration-dependent manner [85]. At daily i.p. doses of 5 - 10 mg/kg to mice for 7 days, the polysaccharide increased spleen lymphocyte proliferation induced by Con A. The number of plaque-forming cells in the spleen in sheep red cell-immunized mice was increased by the polysaccharide [86]. A single i.p. injection of the fruit polysaccharides at a dose of 10 mg/kg induced proliferation of splenocytes in 12 months old mice, the lymphokine-activated killer cell activities being significantly higher than that of control animals. Combined use of polysaccharides with IL-2 i.p. resulted in a synergistic induction of lymphocyte-activated killer cell activities (LAK) from aged mice in vitro [87]. Furthermore, the polysaccharide was reported to partially or completely reverse the immunosuppressive effect of cyclophosphamide in mice [88].

In a clinical trial, 79 patients with advanced cancer were treated with LAK/IL-2 combining with L. barbarum polysaccharides: initial results from 75 evaluable patients indicated that objective regression of cancer was achieved in patients with malignant melanoma, renal cell carcinoma, colorectal carcinoma, lung cancer, and nasopharyngeal carcinoma. The response rate was 41 %, while that of patients treated with LAK/IL-2 alone was 16 %. Patients treated with LAK/IL-2 plus polysaccharides showed a significantly longer mean remission period and a more pronounced increase in NK cell and LAK cell activity [89]. The polysaccharide also significantly increased the T lymphocyte blastogenic and phagocytic rate of macrophages in 171 cancer patients after radiotherapy [90].

Experimental studies showed that the polysaccharides enhanced the antineoplastic activity of irradiation and carmustine treatment in G422 tumor-bearing mice [91]. Furthermore, they exhibited radiosensitizing effects in mice transplanted with Lewis lung cancer [92]. The polysaccharide given to mice bearing S180 tumors significantly decreased tumor weight in a dose-dependent manner and increased the number of splenocytes, and it promoted the activated T cells, NK cell activity and TNFβ levels in tumor bearing mice [93].

Radix Codonopsis Pilosulae (Dangshen), the root of Codonopsis pilosula (Franch.) Nannf., Codonopsis pilosula Nannf. var. modesta (Nannf.) L. T. Shen or Codonopsis tangshen Oliv. (Campanulaceae), listed in the Chinese Pharmacopoeia, is known to contain polysaccharides and to exhibit immunostimulating and antitumor activities. It is used in Traditional Chinese Medicine mainly as a general tonic. Polysaccharides from the root of C. pilosula are composed of glucose, fructose, galactose, arabinose, mannose, rhamnose, xylose, and ribose in different ratios [94].

The extract of the root of C. pilosula was reported to enhance T-lymphocyte activity, but not NK cell activity of human lymphocytes in vitro and to stimulate the production of immunoglobulin by B-cells and of IL-1 by monocytes [95]. The extract of the root of C. pilosula was also reported to stimulate the immunological functions in normal and in cyclophosphamide-suppressed mice [96] as well as in tumor-bearing mice treated with cyclophosphamide [97]. The extract of the root of C. pilosula used as an adjuvant in 76 cancer patients during radiotherapy reduced the immunosuppressive effect of radiation [98].

#

Ribosome-Inactivating Proteins (RIP)

Ribosome-inactivating proteins (RIP), widespread throughout the plant kingdom, especially from Cucurbitaceae, are a group of proteins able to inactivate eukaryotic protein synthesis by attacking the 28S ribosomal RNA [99]. One of the first isolated, purified and sequenced RIP was trichosanthin from the root of Trichosanthes kirilowii Maxim. (Cucurbitaceae). Radix Trichosanthis (Tianhuafen), the dried root of Trichosanthes kirilowii or Trichosanthes rosthomii Harms is listed in the Chinese Pharmacopoeia and is used clinically to terminate pregnancy. Besides Radix Trichosanthis, also Fructus Trichosanthis (Gualou), the ripe fruit, Pericarpium Trichosanthis (Gualoupi), the pericarp of the ripe fruits; and Semen Trichosanthis (Gualouzi), the ripe seed of T. kirilowii or T. rosthomii, are listed in the Chinese Pharmacopoeia.

Trichosanthin is a relatively simple linear polypeptide composed of 246(7) amino acid residues with a C-terminus of Asn-Asn-Met or Asn-Asn-Met-Ala with a molecular weight of about 27 kDa [100]. X-ray diffraction and Raman spectroscopy of trichosanthin revealed 8 segments of an α-helix with about 85 amino acids, and 13 strands of β-sheet structure with about 70 amino acids, as well as some extended chains. The α-helices are in the center of the molecule and are surrounded by β-sheets [101].[*]

α-Kirilowin, β-kirilowin and trichokirin are further RIP from the seed of T. kirilowii. β-Kirilowin possessing a molecular weight of 27.5 kDa did not show cross-reactivity with trichosanthin. Sequence comparison of the first 10 residues of β-kirilowin with trichosanthin and trichokirin indicated 60 - 70 % identity [102]. α-Kirilowin was reported to have a molecular weight of 28.8 kDa. The amino acid composition of α-kirilowin grossly resembled β-kirilowin and other RIP. The N-terminal sequence of α-kirilowin was identical to that of β-kirilowin, at least in the first ten residues [103].

Trichosanthin inactivated ribosomes and arrested protein synthesis by removing a specific adenine from 28S rRNA. Experiments on the binding modes of trichosanthin with oligonucleotides GAG, GAGA, and CGAGAG as substrates showed that all the oligoribonucleotides can dock into the active cleft of trichosanthin without unfavorable contacts [104], [105]. Positions 120 - 123 of the native trichosanthin molecule may play a critical role in maintaining the inhibition of protein biosynthesis [106], [107]. Fragments corresponding to amino acids 1 - 72 and 153 - 246 are supposed to be the antigenic sites [108].

Trichosanthin was found to inhibit the growth of trichoblastic cells. It is therefore used for the treatment of abnormal growth of trichoblastic cells such as hydatiform and malignant moles and choriocarcinomas [109]. Studies on the in vitro cytotoxicity of trichosanthin showed that it selectively damaged choriocarcinoma and melanoma cells whereas hepatoma cells were resistant to the treatment. Cytotoxicity profiles of trichosanthin differed from those of anti-cancer drugs which interfere with DNA metabolism. The N-terminal peptides composed of amino acid residues 1 - 15 and 16 - 30 caused increases in concanavalin A (ConA) stimulated incorporation of 3[H]thymidine into normal spleen cells at a concentration of 5 μg/ml. These peptides also showed growth inhibitory effects against L1210 leukemic cells in vivo [110].

Clinical trials using trichosanthin for the treatment of hydatidiform mole were successful in 44 of 52 patients (85 %) including 38 complete remissions (73 %) and 6 incomplete remissions (12 %) [111]. In vitro studies revealed that trichosanthin induced the generation of reactive oxygen species in human choriocarcinoma cell line (JAR cells). The formation of reactive oxygen species induced by trichosanthin was dependent on the presence of extracellular Ca2+ and involved in the apoptosis of JAR cells [112]. Trichosanthin also induced apoptosis of HeLa cells [113].

The conjugation of trichosanthin to monoclonal antibodies formed an immunotoxin able to inhibit the growth of human melanoma and hepatoma cells in vitro. The cytotoxicity of the conjugate to M21 human melanoma cells was 2000-fold higher than that of a mixture composed of antibody and trichosanthin [114]. The cytotoxicity of the immunotoxin composed of trichosanthin and monoclonal antibody was 500-fold higher in inhibiting the growth of human hepatoma cells as compared to free trichosanthin [115]. The in vitro cytotoxicity of the conjugated immunotoxin versus human colon carcinoma (LoVo) cells was approximately 150-fold higher than that of free trichosanthin or 2000-fold higher than that of the conjugate of trichosanthin with normal mouse immunoglobulin IgG. In vivo experiments showed that the immunotoxin also effectively inhibited human colon carcinoma xenografts in nude mice and prolonged the life span of tumor-bearing animals without obvious toxic effects to host mice [116].

Luffins, such as luffin-α [117], [118], luffin-β [119] and luffin-S [120] are RIPs from the fruit and seed of Luffa cylindrica (L.) Roem. (Cucurbitaceae). Luffins are basic glycoproteins in nature and possess a molecular weight of approximately 30,000. They are reported to exhibit abortifacient, antitumor, ribosome inactivating and immunomodulatory activities [121]. Luffin-α consists of 248 amino acid residues and possesses a relative molecular weight of 27,021 Da, excluding the attached sugar chains present at each Asn residue of positions 28, 33, 77, 84, 206, and 227. Retinervus Luffae Fructus (Sigualuo), the fibrovascular bundle of the ripe fruits of L. cylindrica, is listed in the Chinese Pharmacopoeia. Luffin-α has been observed to inhibit the proliferation and to induce apoptosis of human melanoma cells in vitro [122], [123].

Further known RIPs from Chinese herbal medicines are e.g. cochinchinin and momorcochin S from the seeds of Momordica cochinchinensis (Lour.) Spreng. (Cucurbitaceae) [124], [125]; cinnamomin and camphorin from the seeds of Cinnamomum camphora (L.) Sieb. (Lauraceae) [126], [127], [128], [129]; pokeweed antiviral proteins from the leaves and seeds of Phytolacca americana L. (Phytolaccaceae) [130], [131]; ricin from the seeds of Ricinus communis L. (Euphorbiaceae). Semen Momordicae (Mubiezi), the ripe seed of M. cochinchinensis; Semen Ricini (Bimazi), the ripe seed of R. communis; Radix Phytolaccae (Shanglu), the root of P. americana and P. acinosa are listed in the Chinese Pharmacopoeia. Pokeweed antiviral proteins [132], [133] and ricin [134] are used for the preparation of immunotoxin with monoclonal antibody. Ricin immunotoxins have been entered in clinical trials mainly in the treatment of lymphomas [134], [135], [136], [137], [138], [139], [140].

Zoom Image

Fig. 1 Primary structure of trichosanthin.

#

Conclusion

High molecular compounds from Chinese herbal medicines, including ribosome-inactivating proteins and polysaccharides from both fungi and high plants have been tested for the treatment of malignant diseases. Polysaccharides possessing immunostimulating activities can be used as adjuvants in tumor treatment. The fungi containing such polysaccharides are usually edible mushrooms or tonics in Traditional Chinese Medicine. Parts from high plants such as Radix Astragali and Fructus Lycii containing polysaccharides are mainly used as tonic in Traditional Chinese Medicine. Ribosome-inactivating proteins are a group of proteins exerting cytotoxic activities via inhibition of protein synthesis. Some of the ribosome-inactivating proteins have been used as the cytotoxic part in conjugates with monoclonal antibodies as tumor-targeting drugs. The cytotoxic and antineoplastic mechanisms of the high molecular compounds are rather different from those of the low molecular compounds described in part I (see footnote 3, p. 193). Obviously, because of genetic factors that influence enzyme levels accounting for sometimes striking differences in metabolism and pharmacokinetics of drugs, results obtained in clinical studies carried out in China or Japan are not transferable to 100 % to the European population. Since many of the clinical studies referred to in this paper have been carried out on Asians, the outcome of such studies in Caucasians or Africans might not be the same.

#

References

  • 1 Kidd P M. The use of mushroom glucans and proteoglycans in cancer treatment.  Altern Med Rev. 2000;  5 4-27
  • 2 Ooi V E, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes.  Curr Med Chem. 2000;  7 715-29
  • 3 Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom).  Cancer Res. 1970;  30 2776-81
  • 4 Shida M, Ushioda Y, Nakajima T, Matsuda K. Structure of the alkali-insoluble skeletal glucan of Lentinus edodes .  J Biochem (Tokyo). 1981;  90 1093-100
  • 5 Wang G L, Lin Z B. The immunomodulatory effect of lentinan.  Acta Pharm Sin. 1996;  31 86-90
  • 6 Nakano H, Namatame K, Nemoto H, Motohashi H, Nishiyama K, Kumada K. A multi-institutional prospective study of lentinan in advanced gastric cancer patients with unresectable and recurrent diseases: effect on prolongation of survival and improvement of quality of life.  Hepatogastroenterology. 1999;  46 2662-8
  • 7 Takita M, Onda M, Tokunaga A, Shirakawa T, Ikeda K, Hiramoto Y, et al. Successful treatment of hepatic metastasis of gastric cancer with 5′-DFUR and lentinan.  Gan To Kagaku Ryoho. 1998;  28 129-33
  • 8 Mio H, Terabe K. Clinical effects of postoperative immunochemotherapy with a combination of 5-FU, CDDP and lentinan for stage IVb gastric carcinoma and long-term pharmacokinetic studies on CDDP and 5-FU.  Gan To Kagaku Ryoho. 1997;  24 337-42
  • 9 Taguchi T. Clinical efficacy of lentinan on patients with stomach cancer: end point results of a four-year-follow-up survey.  Cancer Detect Prev Suppl. 1987;  1 333-49
  • 10 Takeshita K, Hayashi S, Tani M, Kando F, Saito N, Endo M. Monocyte function associated with intermittent lentinan therapy after resection of gastric cancer.  Surg Oncol. 1996;  5 23-8
  • 11 Arinaga S, Karimine N, Takamuku K, Nanbara S, Nagamatsu M, Ueo H, et al. Enhanced production of interleukin 1 and tumor necrosis factor by peripheral monocytes after lentinan administration in patients with gastric carcinoma.  Int J Immunopharmacol. 1992;  14 43-7
  • 12 Arinaga S, Karimine N, Takamuku K, Nanbara S, Inoue H, Nagamatsu M, et al. Enhanced induction of lymphokine-activated killer activity after lentinan administration in patients with gastric carcinoma.  Int J Immunopharmacol. 1992;  14 535-9
  • 13 Suto T, Fukuda S, Moriya N, Watanabe Y, Sasaki D, Yoshida Y, et al. Clinical study of biological response modifiers as maintenance therapy for hepatocellular carcinoma.  Cancer Chemother Pharmacol. 1994;  33 Suppl 145-8
  • 14 Chihara G. Preclinical evaluation of lentinan in animal models.  Adv Exp Med Biol. 1983;  166 189-97
  • 15 Li J F, Guo J W, Huang X F. Study on the enhancing effect of polyporus polysaccharide, mycobacterium polysaccharide and lentinan on lymphokine-activated killer cell activity in vitro .  Chin J Integr Trad West Med. 1996;  16 224-6
  • 16 Liu F, Ooi V E, Fung M C. Analysis of immunomodulating cytokine mRNAs in the mouse induced by mushroom polysaccharides.  Life Sci. 1999;  64 1005-11
  • 17 Ogawa T, Ohwada S, Sato Y, Izumi M, Nakamura S, Takeyoshi I, et al. Effects of 5′-DFUR and lentinan on cytokines and PyNPase against AH66 ascites hepatoma in rats.  Anticancer Res. 1999;  19A 375-9
  • 18 Murata T, Hatayama I, Kakizaki I, Satoh K, Sato K, Tsuchida S. Lentinan enhances sensitivity of mouse colon 26 tumor to cis-diamminedichloroplatinum (II) and decreases glutathione transferase expression.  Jpn J Cancer Res. 1996;  87 1171-8
  • 19 Haba S, Hamaoka T, Takatsu K, Kitagawa M. Selective suppression of T-cell activity in tumor-bearing mice and its improvement by lentinan, a potent anti-tumor polysaccharide.  Int J Cancer. 1976;  18 93-104
  • 20 Suzuki M, Takatsuki F, Maeda Y Y, Hamuro J, Chihara G. Antitumor and immunological activity of lentinan in comparison with LPS.  Int J Immunopharmacol. 1994;  16 463-8
  • 21 Mitamura T, Sakamoto S, Suzuki S, Yoshimura S, Maemura M, Kudo H. Effects of lentinan on colorectal carcinogenesis in mice with ulcerative colitis.  Oncol Rep. 2000;  7 599-601
  • 22 Oka M, Hazama S, Suzuki M, Wang F, Wadamori K, Iizuka N, et al. In vitro and in vivo analysis of human leukocyte binding by the antitumor polysaccharide, lentinan.  Int J Immunopharmacol. 1996;  18 211-6
  • 23 Ladanyi A, Timar J, Lapis K. Effect of lentinan on macrophage cytotoxicity against metastatic tumor cells.  Cancer Immunol Immunother. 1993;  36 123-6
  • 24 Jeannin J F, Lagadec P, Pelletier H, Reisser D, Olsson N O, Chihara G, et al. Regression induced by lentinan, of peritoneal carcinomatoses in a model of colon cancer in rat.  Int J Immunopharmacol. 1988;  10 855-61
  • 25 Morinaga H, Tazawa K, Tagoh H, Muraguchi A, Fujimaki M. An in vivo study of hepatic and splenic interleukin-1β mRNA expression following oral PSK or LEM administration.  Jpn J Cancer Res. 1994;  85 1298-303
  • 26 Suzuki M, Kikuchi T, Takatsuki F, Hamuro J. Curative effects of combination therapy with lentinan and interleukin-2 against established murine tumors, and the role of CD8-positive T cells.  Cancer Immunol Immunother. 1994;  38 1-8
  • 27 Moriyuki H, Ichimura M. Acute toxicity of lentinan in mice and rats.  J Toxicol Sci. 1980;  5 Suppl 1-9
  • 28 Tsukagoshi S, Hashimoto Y, Fujii G, Kobayashi H, Nomoto K, Orita K. Krestin (PSK).  Cancer Treat Rev. 1984;  11 131-55
  • 29 Wang H X, NG T B, Liu W K, Ooi V E, Chang S T. Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages.  Int J Biochem Cell Biol. 1996;  28 601-7
  • 30 Maehara Y, Inutsuka S, Takeuchi H, Baba H, Kusumoto H, Sugimachi K. Postoperative PSK and OK-432 immunochemotherapy for patients with gastric cancer.  Cancer Chemother Pharmacol. 1993;  33 (2) 171-5
  • 31 Kobayashi H, Matsunaga K, Fujii M. PSK as a chemopreventive agent.  Cancer Epidemio Biomarkers Prev. 1993;  2 271-6
  • 32 Fujii T, Saito K, Matsunaga K, Oguchi Y, Ikuzawa M, Furusho T, et al. Prolongation of the survival period with the biological response modifier PSK in rats bearing N-methyl-N-nitrosourea-induced mammary gland tumors.  In Vivo. 1995;  9 55-7
  • 33 Kobayashi Y, Kariya K, Saigenji K, Nakamura K. Suppression of cancer cell growth in vitro by the protein-bound polysaccharide of Coriolus versicolor Quel (PSK) with SOD mimicking activity.  Cancer Biother. 1994;  9 63-9
  • 34 Kobayashi Y, Kariya K, Saigenji K, Nakamura K. Enhancement of anti-cancer activity of cisdiaminedichloroplatinum by the protein-bound polysaccharide of Coriolus versicolor Quel (PSK) in vitro .  Cancer Biother. 1994;  9 351-8
  • 35 Sakagami H, Sugaya K, Utsumi A, Fujinaga S, Sato T, Takeda M. Stimulation by PSK of interleukin-1 production by human peripheral blood mononuclear cells.  Anticancer Res. 1993;  13 671-5
  • 36 Kohgo Y, Hirayama Y, Sakamaki S, Matsunaga T, Ohi S, Kuga T, et al. Improved recovery of myelosuppression following chemotherapy in mice by combined administration of PSK and various cytokines.  Acta Haematol. 1994;  92 130-5
  • 37 Kobayashi H, Matsunaga K, Oguchi Y. Antimetastatic effects of PSK (Krestin), a protein-bound polysaccharide obtained from basidiomycetes: an overview.  Cancer Epidemio Biomarkers Prev. 1995;  4 275-81
  • 38 Matsunaga K, Ohhara M, Oguchi Y, Iijima H, Kobayashi H. Antimetastatic effect of PSK, aprotein-bound polysaccharide, against the B16-BL6 mouse melanoma.  Invasion and Metastasis. 1996. 16 27-38
  • 39 Kanoh T, Matsunaga K, Saito K, Fujii T. Suppression of in vivo tumor-induced angiogenesis by the protein-bound polysaccharide PSK.  In Vivo . 1994;  8 247-50
  • 40 Pang Z J, Chen Y, Zhou M, Wan J. Effect of polysaccharide krestin on glutathione peroxidase gene expression in mouse peritoneal macrophages.  Br J Biomed Sci. 2000;  57 130-6
  • 41 Pang Z J, Chen Y, Zhou M. Polysaccharide Krestin enhances manganese superoxide dismutase activity and mRNA expression in mouse peritoneal macrophages.  Am J Chin Med. 2000;  28 331-41
  • 42 Asai K, Kato H, Hirose K, Akaogi K, Kimura S, Mukai S, et al. PSK and OK-432-induced immunomodulation of inducible nitric oxide (NO) synthase gene expression in mouse peritoneal polymorphonuclear leukocytes and NO-mediated cytotoxicity.  Immunopharmacol Immunotoxicol. 2000;  22 221-35
  • 43 Liu W K, Ng T B, Sze S F, Tsui K W. Activation of peritoneal macrophages by polysaccharopeptide from the mushroom, Coriolus versicolor .  Immunopharmacology. 1993;  26 139-46
  • 44 Qian Z M, Xu M F, Tang P L. Polysaccharide peptide (PSP) restores immunosuppression induced by cyclophosphamide in rats.  Am J Chin Med. 1997;  25 27-35
  • 45 Lin I H, Hau D M, Chang Y H. Restorative effect of Coriolus versicolor polysaccharides against γ-irradiation-induced spleen injury in mice.  Acta Pharmacol Sin. 1996;  17 102-4
  • 46 Li X Y, Wang J F, Zhu P P, Liu L, Ge J B, Yang S X. Immune enhancement of a polysaccharides peptides isolated from Coriolus versicolor .  Acta Pharmacol Sin. 1990;  11 542-5
  • 47 Mao X W, Archambeau J O, Gridley D S. Immunotherapy with low-dose interleukin-2 and a polysaccharopeptide derived from Coriolus versicolor .  Cancer Biother Radiopharm. 1996;  11 393-403
  • 48 Dong Y, Kwan C Y, Chen Z N, Yang M M. Antitumor effects of a refined polysaccharide peptide fraction isolated from Coriolus versicolor: in vitro and in vivo studies.  Res Commun Mol Pathol Pharmacol. 1996;  92 140-8
  • 49 Misaki A, Kakuta M, Sasaki T, Tanaka M, Miyaji H. Studies on interrelation of structure and antitumor effects of polysaccharides: antitumor action of periodate-modified, branched (1→ 3)-β-D-glucan of Auricularia auricula-judae, and other polysaccharides containing (1→ 3)-glycosidic linkages.  Carbohydr Res. 1981;  92 115-29
  • 50 Kiho T, Shiose Y, Nagai K, Ukai S. Polysaccharides in fungi. XXX. Antitumor and immunomodulating activities of two polysaccharides from the fruiting bodies of Armillariella tabescens .  Chem Pharm Bull (Tokyo). 1992;  40 2110-4
  • 51 Lee S S, Wei Y H, Chen C F, Wang S Y, Chen K Y. Antineoplastic effects of Ganodermal ucidum .  J Chin Med. 1995;  6 1-12
  • 52 Li J F, Guo J W, Huang X F. Study on the enhancing effect of Polyporus polysaccharide, Mycobacterium polysaccharide and lentinan on lymphokine-activated killer cell activity in vitro Chin J Integr Trad West Med.  1996;  16 224-6
  • 53 Li J F, Huang X F, Lin B Y. The effects on NK and endogenous LAK activities of splenic cells in mice by Polyporus polysaccharide in vivo .  Chin J Microbiol Immunol. 1995;  15 89-91
  • 54 Wu G S, Zhang L Y, Okuda H. Inhibitive effect of Umbellatus polyporus polysaccharide on cachexic manifestation induced by toxohormone-L in rats.  Chin J Integr Trad West Med. 1997;  17 232-3
  • 55 Chihara G, Hamuro I, Maeda Y, Arai Y, Fukuoka F. Antitumor polysaccharide derived chemically from natural glucan (pachyman).  Nature. 1970;  225 943-4
  • 56 Kanayama H, Togami M, Adachi N, Fukai Y, Okumoto T. Studies on the antitumor active polysaccharides from the mycelia of Poria cocos Wolf. III. Antitumor activity against mouse tumors.  Yakugaku Zasshi. 1986;  106 307-12
  • 57 Gao Q P, Jiang R Z, Chen H Q, Jensen E, Seljelid R. Characterization and cytokine stimulating activities of heteroglycans from Tremella fuciformis .  Planta Med. 1996;  62 297-302
  • 58 Gao Q, Killie M K, Chen H, Jiang R, Seljelid R. Characterization and cytokine-stimulating activities of acidic heteroglycans from Tremella fuciformis .  Planta Med. 1997;  63 457-60
  • 59 Xia D, Lin Z B. Effects of Tremella polysaccharides on immune function in mice.  Acta Pharmacol Sin. 1989;  10 453-7
  • 60 Tomoda M, Shimizu N, Ohara N, Gonda R, Ishii S, Otsuki H. A reticuloendothelial system-activating glycan from the roots of Astragalus membranaceus .  Phytochemistry. 1991;  31 63-6
  • 61 Fang S D, Chen Y, Xu X Y, Ye C Q, Zhai S K, Shen M L. Studies of the active principles of Astragalus mongholicus Bunge. I. Isolation, characterization and biological effect of its polysaccharides. Org Chem 1982: 26-31
  • 62 Huang Q S, Lu G B, Li Y C, Guo J H, Wang R X. Studies on the polysaccharides of “Huang Qi” (Astragalus mongholicus Bunge).  Acta Pharm Sin. 1982;  17 200-6
  • 63 Shimizu N, Tomoda M, Kanari M, Gonda R. An acidic polysaccharide having activity on the reticuloendothelial system from the root of Astragalus mongholicus .  Chem Pharm Bull (Tokyo). 1991;  39 2969-72
  • 64 Toshino S, Tabata T, Hazama S M, Iizuka N, Yamamoto K, Hirayama M, et al. Immunoregulatory effects of the antitumor polysaccharide lentinan on Th1/Th2 balance in patients with digestive cancers.  Anticancer Res. 2000;  20C 4707-11
  • 65 Chang C Y, Hou Y D, Xu F M. Effects of Astragalus membranaceus on enhancement of mouse natural killer cell activity.  Acta Acad Med Sin. 1983;  5 231-4
  • 66 Tu W W, Yang Y Q, Wang L J, Zhang Y W, Shen J. In vivo effects of Astragalus membranaceus on immunoglobulin G subclass deficiency.  Chin J Immunol. 1995;  11 34-7
  • 67 Wang D Y, Li C Y, Pong D W. Effect of Astragalus polysaccharide on RNase and RNase inhibitor.  Acta Biochem Biophys Sin. 1984;  16 285-90
  • 68 Chu D T, Wong W L, Mavligit G M. Immunotherapy with Chinese medicinal herbs. II. Reversal of cyclophosphamide-induced immune suppression by administration of fractionated Astragalus membranaceus in vivo .  J Chin Lab Immunol. 1988;  25 125-9
  • 69 Chen L J, Shen M L, Wang M Y, Zhai S K, Liu M Z. Effect of Astragalus polysaccharides on phagocytic function in mice.  Acta Pharmacol Sin. 1981;  2 200-4
  • 70 Zhao K W, Kong H Y. Effect of Astragalan on secretion of tumor necrosis factors in human peripheral blood mononuclear cells.  Chin J Integr Trad West Med. 1993;  13 263-5, 259
  • 71 Ma D, Cai G R, Liu C M. Inhibitory effect of Astragalus membranaceus and Acanthopanax senticosus on proliferation of human ovarian cancer cells in vitro .  Tumor. 1992;  12 51-2
  • 72 Lau B H, Ruckle H C, Botolazzo T, Lui P D. Chinese medicinal herbs inhibit growth of murine renal cell carcinoma.  Cancer Biother. 1994;  9 153-61
  • 73 Yang H X, Zhao G. Death and apoptosis of LAK cell during immunologic assault and the rescuing effects of APS.  Chin J Clin Oncol. 1998;  25 669-72
  • 74 Cha R J, Zeng D W, Chang Q S. Non-surgical treatment of small cell lung cancer with chemo-radio-immunotherapy and traditional Chinese medicine.  Chin J Int Med. 1994;  33 462-6
  • 75 Wang D C. Influence of Astragalus membranaceus (AM) polysaccharide FB on immunologic function of human periphery blood lymphocyte.  Chin J Oncol. 1989;  11 180-3
  • 76 Chu D T, Wong W L, Mavligit G M. Immunotherapy with Chinese medicinal herbs. I. Immune restoration of local xenogeneic graft-versus-host reaction in cancer patients by fractionated Astragalus membranaceus in vitro .  J Chin Lab Immunol. 1988;  25 119-23
  • 77 He J, Zhang S H. Isolation and composition of Lycium barbarum polysaccharides.  Chin Pharm J (Beijing). 1996;  31 716-20
  • 78 Tian G Y, Wang C. Structure elucidation of a high MW glycan of a glycoprotein isolated from the fruit of Lycium barbarum L.  Acta Biochimica Biophysica Sinica. 1995;  27 493-8
  • 79 Zhao C J, He Y Q, Li R Z, Cui G H. Chemistry and pharmacological activtiy of peptidoglycan from Lycium barbarum .  Chin Chem Lett. 1996;  7 1009-10
  • 80 Gan L, Zhang S. Determination of four fractions of Lycium barbarum polysaccharides in different varieties.  J Chin Med Mater. 2001;  24 107-8
  • 81 Du S Y, Qian Y K. Effect of extract of Lycium barbarum on the IL-2R expression of humen lymphocytes.  Chin J Microbiol Immunol. 1995;  15 176-8
  • 82 Sun W J, Sui D Y, Yu X F, Lu Z Z, Hou C Z. Pharmacological studies of polysaccharide-proteins from Lycium barbarum .  J Norman Bethune Univ Med Sci. 1996;  22 486-7
  • 83 Geng C S, Xing S T, Zhou J H, Chu B M. Enhancing effect of Lycium barbarum polysaccharides on the interleukin-2 activity in mice.  Chin J Pharmacol Toxicol. 1989;  3 175-9
  • 84 Zhang X, Li J, Liang H B, Wang L, Qian Y K. Effects of Lycium barbarum polysaccharide on the cell membrane fruidity and protein kinase C in vitro .  J Beijing Med Univ. 1997;  29 118-20
  • 85 Zhang X, Xiang S L, Cui X Y, Qian Y K. Effects of Lycium barbarum polysaccharide (LBP) on lymphocyte signal transduction system in mice.  Chin J Immunol. 1997;  13 289-92
  • 86 Geng C S, Wang G Y, Lin Y D, Xin S T, Zhou J H. The effect of barbary wolfberry (Lycium barbarum) polysaccharide on [3H]thymidine incorporation into splenic lymphocytes and on suppressor T-lymphocytes in mice.  Chin Trad Herbal Drugs. 1988;  19 313-5
  • 87 Cao G W, Du P. Influence of Lycium barbarum polysaccharides and interleukin-2 in vivo on the induction of two kinds of LAK cells from aged mice in vitro .  Chin J Microbiol Immunol. 1992;  12 390-2
  • 88 Wang B X, Xing S T, Zhou J H. Effect of Lycium barbarum polysaccharides on the immune responses of T, CTL and NK cells in normal and cyclophosphamide-treated mice.  Chin J Pharmacol Toxicol. 1990;  4 39-43
  • 89 Cao G W, Yang W G, Du P. Observation of the effects of LAK/IL-2 therapy combining with Lycium barbarum polysaccharides in the treatment of 75 cancer patients.  Chin J Oncol. 1994;  16 428-31
  • 90 Liu J N, Cheng B Q, Zhang J R, Tan X R, Ji Y Z. Effect of Lycium polysaccharide on immune responses of cancer patients following radiotherapy.  Zhonghua Fangshe Yixue Yu Fanghu Zazhi. 1996;  16 18-20
  • 91 Sun W J, Xu W L, Zhang Y X, Huang R H, Duan G S. Therapeutic effects of Lycium barbarum polysaccharides in combination with irradiation and carmustine in G422 tumor-bearing mice.  Chin J Clin Oncol. 1994;  21 930-2
  • 92 Lu C X, Cheng B Q. Radiosensitizing effects of Lycium barbarum polysaccharide for Lewis lung cancer.  Chin J Integr Trad West Med. 1991;  11 611-2
  • 93 Liu J L, Zhang L H, Qian Y K. Tumor inhibition of Lycium barbarum polysaccharide on S180-bearing mice.  Chin J Immunol. 1996;  12 115-7
  • 94 Zhang S J, Zhang S Y. Polysaccharides of Dangshen (Codonopsis pilosula).  Chin Trad Herbal Drugs. 1987;  18 98-100
  • 95 Shan B E, Yoshida Y, Sugiura T, Yamashita U. Stimulating activity of Chinese medicinal herbs on human lymphocytes in vitro .  Int J Immunopharmacol. 1999;  21 149-59
  • 96 Mao X L, Zhou Y. Preliminary study of the effects of extract of Codonopsis pilosula on immunological functions of normal and immunosuppressed mice introduced by cyclophosphamide.  Chin J Integr Trad West Med. 1985;  5 739-41
  • 97 Hu S K. Effect of the combination of Codonopsis pilosula and cyclophosphamide on the transplantable tumor and tumor-bearing mice.  Chin J Integr Trad West Med. 1985;  5 618-21
  • 98 Zeng X L, Li X A, Zhang B Y. Immunological and hematopoietic effect of Codonopsis pilosula on cancer patients during radiotherapy.  Chin J Integr Trad West Med. 1992;  12 607-8, 581
  • 99 Wang R H, Zhang S, Chen X, Shen B F. Inhibition of protein synthesis in cell-free system by single chain ribosome-inactivating proteins.  Chin Biochem J. 1992;  8 395-9
  • 100 Wang Y, Gu Z W, Ye G J, Sun X J, Wang Q H, Jin S W. Revision of the primary structure of trichosanthin and study on the trichosanthin from different places of origin.  Acta Chim Sin. 1993;  51 1023-9
  • 101 Wu T W, Pang K C, Wu C C, Wu H T, Chang Y M, Ni C C, et al. Growth of single crystals and determination of unit-cell parameters for trichosanthin.  Kexue Tongbao. 1978;  23 176-8
  • 102 Dong T X, Ng T B, Yeung H W, Wong R NS. Isolation and characterization of a novel ribosome-inactivating protein, β-kirilowin, from the seeds of Trichosanthes kirilowii .  Biochem Biophys Res Commun. 1994;  199 387-93
  • 103 Wong R NS, Dong T X, Ng T B, Choi W T, Yeung H W. α-Kirilowin, a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii (family Cucurbitaceae): a comparison with β-kirilowin and other related proteins.  Int J Pept Protein Res. 1996;  47 103-9
  • 104 Gu Y, Chen W, Xia Z. Molecular modeling of the interactions of trichosanthin with four substrate analogs.  J Protein Chem. 2000;  19 291-7
  • 105 Gu Y J, Xia Z X. Crystal structures of the complexes of trichosanthin with four substrate analogs and catalytic mechanism of RNA N-glycosidase.  Proteins. 2000;  39 37-46
  • 106 Nie H, Cai X, He X, Xu L, Ke K, Ke Y, et al. Position 120 - 123, a potential active site of trichosanthin.  Life Sci. 1998;  62 491-500
  • 107 Xi Z D, Ma B L, Yang L M, Cao H N, Wang M. Active site of trichosanthin acting as a ribosome-inactivating protein.  Acta Pharmacol Sin. 1997;  18 447-51
  • 108 Mulot S, Chung K K, Li X B, Wong C C, Ng T B, Shaw P C. The antigenic sites of trichosanthin a ribosome-inactivating protein with multiple pharmacological properties.  Life Sci. 1997;  61 2291-303
  • 109 Shaw P C, Chan W L, Yeung H W, Ng T B. Minireview: trichosanthin - a protein with multiple pharmacological properties.  Life Sci. 1994;  55 253-62
  • 110 Takemoto D J. Effect of trichosanthin, an anti-leukemia protein on normal mouse spleen cells.  Anticancer Res. 1998;  18(A) 357-61
  • 111 Lu P X, Jin Y C. Trichosanthin in the treatment of hydatidiform mole.  Clinical analysis of 52 cases. Chin Med J (Engl Ed). 1990;  103 183-5
  • 112 Zhang C Y, Gong Y X, Ma H, An C C, Chen D Y. Trichosanthin induced calcium-dependent generation of reactive oxygen species in human choriocarcinoma cells.  Analyst. 2000;  125 1539-42
  • 113 Ru Q H, Luo G A, Liao J J, Liu Y. Capillary electrophoretic determination of apoptosis of HeLa cells induced by trichosanthin.  J Chromatogr A. 2000;  894 165-70
  • 114 Zhang R P, Xu C J, Cao H T, Ji R H, Zhang Z C. In vitro inhibition of trichosanthin-conjugate on human melanoma cells.  Chin J Immunol. 1993;  9 348-51
  • 115 Wang Q C, Ying W B, Xie H, Zhang Z C, Yang Z H, Ling L Q. Trichosanthin-monoclonal antibody conjugate specifically cytotoxic to human hepatoma cells in vitro .  Cancer Res. 1991;  51 3353-5
  • 116 Gao H L, Zhou G Y, Lu D Y, Zhang W Y. Trichosanthin - CEA Mab conjugate cytotoxic to human colon carcinoma.  Chin J Immunol. 1992;  8 300-3
  • 117 Islam M R, Nishida H, Funatsu G. Complete amino acid sequence of luffin-α, a ribosome-inactivating protein from the seeds of Luffa cylindrica .  Agric Biol Chem. 1990;  54 1343-5
  • 118 Chen R S, Leung H W, Dong Y C, Wong R N. Modeling of the three-dimensional structure of luffin-α and its stimulated reaction with the substrate oligoribonucleotide GAGA.  J Protein Chem. 1996;  15 649-57
  • 119 Kataoka J, Habuka N, Miyano M, Masuta C, Koiwai A. Nucleotide sequence of cDNA encoding β-luffin, another ribosome-inactivating protein from Luffa cylindrica .  Plant Mol Biol. 1993;  19 887-9
  • 120 Gao W, Ling J, Zhong X, Liu W, Zhang R, Yang H, et al. Luffin-S: a small novel ribosome-inactivating protein from Luffa cylindrica. Characterization and mechanism studies.  FEBS Lett. 1994;  347 257-60
  • 121 Ng T B, Chan W Y, Yeung H W. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants.  Gen Pharmacol. 1992;  23 579-90
  • 122 Poma A, Marcozzi G, Cesare P, Carmignani M, Spano L. Antiproliferative effect and apoptotic resonse in vitro of human melanoma cells to liposomes containing the ribosome-inactivating protein luffin.  Biochim Biophys Acta. 1999;  1472 197-205
  • 123 Poma A, Miranda M, Spano L. Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin.  Melanoma Res. 1998;  8 465-7
  • 124 Huang B, Ng T B, Fong W P, Wan C C, Yeung H W. Isolation of a trypsin inhibitor with deletion of N-terminal pentapeptide from the seeds of Momordica cochinchinensis, the Chinese drug mubiezhi.  Int J Biochem Cell Biol. 1999;  31 707-15
  • 125 Hernandez J F, Gagnon J, Chiche L, Nguyen T M, Andrieu J P, Heitz A, et al. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure.  Biochemistry. 2000;  39 5722-30
  • 126 Zhang A H, Tang S, Liu W. Substrate-structure dependence of ribotoxins on cleaving RNA in C. camphora ribosome.  J Nat Toxins. 2001;  10 119-25
  • 127 Xu Y Z, Li Y J, Hu H Y, Hu R, Wu H, Liu W Y. Adenine nucleotide N-glycosidase activity of the A-chain of cinnamomin characterized by 1H-nuclear magnetic resonance.  Biol Chem. 2000;  381 447-51
  • 128 Ruan J P, Chen W F, Liu W Y. Promotion of ATP and S-140 to ribosome inactivation with camphorin, cinnamomin, and other RNA N-glycosidases.  Acta Pharmacol Sin. 1998;  19 261-4
  • 129 Li X D, Chen W F, Liu W Y, Wang G H. Large-scale preparation of two new ribosome-inactivating proteins-cinnamomin and camphorin from the seeds of Cinnamomum camphora .  Protein Expr Purif. 1997;  10 27-31
  • 130 Kurinov I V, Mao C, Irvin J D, Uckun F M. X-ray crystallographic analysis of pokeweed antiviral protein-II after reductive methylation of lysine residues.  Biochem Biophys Res Commun. 2000;  275 549-52
  • 131 Ferens W A, Hovde C J. Antiviral activity of shiga toxin 1: suppression of bovine leukemia virus-related spontaneous lymphocyte proliferation.  Infect Immun. 2000;  68 4462-9
  • 132 Schlick J, Dulieu P, Desvoyes B, Adami P, Radom J, Jouvenot M. Cytotoxic activity of a recombinant GnRH-PAP fusion toxin on human tumor cell lines.  FEBS Lett. 2000;  472 241-6
  • 133 Waurzyniak B, Schneider E A, Tumer N, Yanishevski Y, Gunther R, Chelstrom L M, et al. In vivo toxicity, pharmacokinetics, and antileukemic activity of TXU (anti-CD7)-pokeweed antiviral protein immunotoxin.  Clin Cancer Res. 1997;  3 881-90
  • 134 Zhong R K, van De Winkel J G, Thepen T, Schultz L D, Ball E D. Cytotoxicity of anti-cd64-ricin a chain immunotoxin against human acute myeloid leukemia cells in vitro and in scid mice.  J Hematother Stem Cell Res. 2001;  10 95-105
  • 135 van Oosterhout Y V, van Ernst J L, Bakker H H, Preijers F W, Schattenberg A V, Ruiter D J, et al. Production of anti-CD3 and anti-CD7 ricin A-immunotoxins for a clinical pilot study.  Int J Pharm. 2001;  221 175-86
  • 136 Schindler J, Sausville E, Messmann R, Uhr J W, Vitetta E S. The toxicity of deglycosylated ricin A chain-containing immunotoxins in patients with non-Hodgkin's lymphoma is exacerbated by prior radiotherapy: a retrospective analysis of patients in five clinical trials.  Clin Cancer Res. 2001;  7 255-8
  • 137 Longo D L, Duffey P L, Gribben J G, Jaffe E S, Curti B D, Gause B L, et al. Combination chemotherapy followed by an immunotoxin (anti-B4-blocked ricin) in patients with indolent lymphoma: results of a phase II study.  Cancer J Sci Am. 2000;  6 146-50
  • 138 Messmann R A, Vitetta E S, Headlee D, Senderowicz A M, Figg W D, Schindler J, et al. A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma.  Clin Cancer Res. 2000;  6 1302-13
  • 139 Schnell R, Vitetta E, Schindler J, Borchmann P, Barth S, Ghetie V, et al. Treatment fo refractory Hodgkin's lymphoma patients with an anti-CD25 rich A-chain immunotoxin.  Leukemia. 2000;  14 129-35
  • 140 Grossbard M L, Multani P S, Freedman A S, O'Day S, Gribben J G, Rhuda C, et al. A Phase II study of adjuvant therapy with anti-B4-blocked ricin after autologous bone marrow transplantation for patients with relapsed B-cell non-Hodgkin's lymphoma.  Clin Cancer Res. 1999;  5 2392-8

3 Part I. Low Molecular Compounds: Planta Med 2003: 69: 97 - 108

Dr. Barbara Bertram

Div. Toxicology and Cancer Risk Factors

Deutsches Krebsforschungszentrum

D-69120 Heidelberg

Phone: +49 (0)6221 423030

Fax: +49 (0)6221 423031

Email: b.bertram@dkfz.de

#

References

  • 1 Kidd P M. The use of mushroom glucans and proteoglycans in cancer treatment.  Altern Med Rev. 2000;  5 4-27
  • 2 Ooi V E, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes.  Curr Med Chem. 2000;  7 715-29
  • 3 Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom).  Cancer Res. 1970;  30 2776-81
  • 4 Shida M, Ushioda Y, Nakajima T, Matsuda K. Structure of the alkali-insoluble skeletal glucan of Lentinus edodes .  J Biochem (Tokyo). 1981;  90 1093-100
  • 5 Wang G L, Lin Z B. The immunomodulatory effect of lentinan.  Acta Pharm Sin. 1996;  31 86-90
  • 6 Nakano H, Namatame K, Nemoto H, Motohashi H, Nishiyama K, Kumada K. A multi-institutional prospective study of lentinan in advanced gastric cancer patients with unresectable and recurrent diseases: effect on prolongation of survival and improvement of quality of life.  Hepatogastroenterology. 1999;  46 2662-8
  • 7 Takita M, Onda M, Tokunaga A, Shirakawa T, Ikeda K, Hiramoto Y, et al. Successful treatment of hepatic metastasis of gastric cancer with 5′-DFUR and lentinan.  Gan To Kagaku Ryoho. 1998;  28 129-33
  • 8 Mio H, Terabe K. Clinical effects of postoperative immunochemotherapy with a combination of 5-FU, CDDP and lentinan for stage IVb gastric carcinoma and long-term pharmacokinetic studies on CDDP and 5-FU.  Gan To Kagaku Ryoho. 1997;  24 337-42
  • 9 Taguchi T. Clinical efficacy of lentinan on patients with stomach cancer: end point results of a four-year-follow-up survey.  Cancer Detect Prev Suppl. 1987;  1 333-49
  • 10 Takeshita K, Hayashi S, Tani M, Kando F, Saito N, Endo M. Monocyte function associated with intermittent lentinan therapy after resection of gastric cancer.  Surg Oncol. 1996;  5 23-8
  • 11 Arinaga S, Karimine N, Takamuku K, Nanbara S, Nagamatsu M, Ueo H, et al. Enhanced production of interleukin 1 and tumor necrosis factor by peripheral monocytes after lentinan administration in patients with gastric carcinoma.  Int J Immunopharmacol. 1992;  14 43-7
  • 12 Arinaga S, Karimine N, Takamuku K, Nanbara S, Inoue H, Nagamatsu M, et al. Enhanced induction of lymphokine-activated killer activity after lentinan administration in patients with gastric carcinoma.  Int J Immunopharmacol. 1992;  14 535-9
  • 13 Suto T, Fukuda S, Moriya N, Watanabe Y, Sasaki D, Yoshida Y, et al. Clinical study of biological response modifiers as maintenance therapy for hepatocellular carcinoma.  Cancer Chemother Pharmacol. 1994;  33 Suppl 145-8
  • 14 Chihara G. Preclinical evaluation of lentinan in animal models.  Adv Exp Med Biol. 1983;  166 189-97
  • 15 Li J F, Guo J W, Huang X F. Study on the enhancing effect of polyporus polysaccharide, mycobacterium polysaccharide and lentinan on lymphokine-activated killer cell activity in vitro .  Chin J Integr Trad West Med. 1996;  16 224-6
  • 16 Liu F, Ooi V E, Fung M C. Analysis of immunomodulating cytokine mRNAs in the mouse induced by mushroom polysaccharides.  Life Sci. 1999;  64 1005-11
  • 17 Ogawa T, Ohwada S, Sato Y, Izumi M, Nakamura S, Takeyoshi I, et al. Effects of 5′-DFUR and lentinan on cytokines and PyNPase against AH66 ascites hepatoma in rats.  Anticancer Res. 1999;  19A 375-9
  • 18 Murata T, Hatayama I, Kakizaki I, Satoh K, Sato K, Tsuchida S. Lentinan enhances sensitivity of mouse colon 26 tumor to cis-diamminedichloroplatinum (II) and decreases glutathione transferase expression.  Jpn J Cancer Res. 1996;  87 1171-8
  • 19 Haba S, Hamaoka T, Takatsu K, Kitagawa M. Selective suppression of T-cell activity in tumor-bearing mice and its improvement by lentinan, a potent anti-tumor polysaccharide.  Int J Cancer. 1976;  18 93-104
  • 20 Suzuki M, Takatsuki F, Maeda Y Y, Hamuro J, Chihara G. Antitumor and immunological activity of lentinan in comparison with LPS.  Int J Immunopharmacol. 1994;  16 463-8
  • 21 Mitamura T, Sakamoto S, Suzuki S, Yoshimura S, Maemura M, Kudo H. Effects of lentinan on colorectal carcinogenesis in mice with ulcerative colitis.  Oncol Rep. 2000;  7 599-601
  • 22 Oka M, Hazama S, Suzuki M, Wang F, Wadamori K, Iizuka N, et al. In vitro and in vivo analysis of human leukocyte binding by the antitumor polysaccharide, lentinan.  Int J Immunopharmacol. 1996;  18 211-6
  • 23 Ladanyi A, Timar J, Lapis K. Effect of lentinan on macrophage cytotoxicity against metastatic tumor cells.  Cancer Immunol Immunother. 1993;  36 123-6
  • 24 Jeannin J F, Lagadec P, Pelletier H, Reisser D, Olsson N O, Chihara G, et al. Regression induced by lentinan, of peritoneal carcinomatoses in a model of colon cancer in rat.  Int J Immunopharmacol. 1988;  10 855-61
  • 25 Morinaga H, Tazawa K, Tagoh H, Muraguchi A, Fujimaki M. An in vivo study of hepatic and splenic interleukin-1β mRNA expression following oral PSK or LEM administration.  Jpn J Cancer Res. 1994;  85 1298-303
  • 26 Suzuki M, Kikuchi T, Takatsuki F, Hamuro J. Curative effects of combination therapy with lentinan and interleukin-2 against established murine tumors, and the role of CD8-positive T cells.  Cancer Immunol Immunother. 1994;  38 1-8
  • 27 Moriyuki H, Ichimura M. Acute toxicity of lentinan in mice and rats.  J Toxicol Sci. 1980;  5 Suppl 1-9
  • 28 Tsukagoshi S, Hashimoto Y, Fujii G, Kobayashi H, Nomoto K, Orita K. Krestin (PSK).  Cancer Treat Rev. 1984;  11 131-55
  • 29 Wang H X, NG T B, Liu W K, Ooi V E, Chang S T. Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages.  Int J Biochem Cell Biol. 1996;  28 601-7
  • 30 Maehara Y, Inutsuka S, Takeuchi H, Baba H, Kusumoto H, Sugimachi K. Postoperative PSK and OK-432 immunochemotherapy for patients with gastric cancer.  Cancer Chemother Pharmacol. 1993;  33 (2) 171-5
  • 31 Kobayashi H, Matsunaga K, Fujii M. PSK as a chemopreventive agent.  Cancer Epidemio Biomarkers Prev. 1993;  2 271-6
  • 32 Fujii T, Saito K, Matsunaga K, Oguchi Y, Ikuzawa M, Furusho T, et al. Prolongation of the survival period with the biological response modifier PSK in rats bearing N-methyl-N-nitrosourea-induced mammary gland tumors.  In Vivo. 1995;  9 55-7
  • 33 Kobayashi Y, Kariya K, Saigenji K, Nakamura K. Suppression of cancer cell growth in vitro by the protein-bound polysaccharide of Coriolus versicolor Quel (PSK) with SOD mimicking activity.  Cancer Biother. 1994;  9 63-9
  • 34 Kobayashi Y, Kariya K, Saigenji K, Nakamura K. Enhancement of anti-cancer activity of cisdiaminedichloroplatinum by the protein-bound polysaccharide of Coriolus versicolor Quel (PSK) in vitro .  Cancer Biother. 1994;  9 351-8
  • 35 Sakagami H, Sugaya K, Utsumi A, Fujinaga S, Sato T, Takeda M. Stimulation by PSK of interleukin-1 production by human peripheral blood mononuclear cells.  Anticancer Res. 1993;  13 671-5
  • 36 Kohgo Y, Hirayama Y, Sakamaki S, Matsunaga T, Ohi S, Kuga T, et al. Improved recovery of myelosuppression following chemotherapy in mice by combined administration of PSK and various cytokines.  Acta Haematol. 1994;  92 130-5
  • 37 Kobayashi H, Matsunaga K, Oguchi Y. Antimetastatic effects of PSK (Krestin), a protein-bound polysaccharide obtained from basidiomycetes: an overview.  Cancer Epidemio Biomarkers Prev. 1995;  4 275-81
  • 38 Matsunaga K, Ohhara M, Oguchi Y, Iijima H, Kobayashi H. Antimetastatic effect of PSK, aprotein-bound polysaccharide, against the B16-BL6 mouse melanoma.  Invasion and Metastasis. 1996. 16 27-38
  • 39 Kanoh T, Matsunaga K, Saito K, Fujii T. Suppression of in vivo tumor-induced angiogenesis by the protein-bound polysaccharide PSK.  In Vivo . 1994;  8 247-50
  • 40 Pang Z J, Chen Y, Zhou M, Wan J. Effect of polysaccharide krestin on glutathione peroxidase gene expression in mouse peritoneal macrophages.  Br J Biomed Sci. 2000;  57 130-6
  • 41 Pang Z J, Chen Y, Zhou M. Polysaccharide Krestin enhances manganese superoxide dismutase activity and mRNA expression in mouse peritoneal macrophages.  Am J Chin Med. 2000;  28 331-41
  • 42 Asai K, Kato H, Hirose K, Akaogi K, Kimura S, Mukai S, et al. PSK and OK-432-induced immunomodulation of inducible nitric oxide (NO) synthase gene expression in mouse peritoneal polymorphonuclear leukocytes and NO-mediated cytotoxicity.  Immunopharmacol Immunotoxicol. 2000;  22 221-35
  • 43 Liu W K, Ng T B, Sze S F, Tsui K W. Activation of peritoneal macrophages by polysaccharopeptide from the mushroom, Coriolus versicolor .  Immunopharmacology. 1993;  26 139-46
  • 44 Qian Z M, Xu M F, Tang P L. Polysaccharide peptide (PSP) restores immunosuppression induced by cyclophosphamide in rats.  Am J Chin Med. 1997;  25 27-35
  • 45 Lin I H, Hau D M, Chang Y H. Restorative effect of Coriolus versicolor polysaccharides against γ-irradiation-induced spleen injury in mice.  Acta Pharmacol Sin. 1996;  17 102-4
  • 46 Li X Y, Wang J F, Zhu P P, Liu L, Ge J B, Yang S X. Immune enhancement of a polysaccharides peptides isolated from Coriolus versicolor .  Acta Pharmacol Sin. 1990;  11 542-5
  • 47 Mao X W, Archambeau J O, Gridley D S. Immunotherapy with low-dose interleukin-2 and a polysaccharopeptide derived from Coriolus versicolor .  Cancer Biother Radiopharm. 1996;  11 393-403
  • 48 Dong Y, Kwan C Y, Chen Z N, Yang M M. Antitumor effects of a refined polysaccharide peptide fraction isolated from Coriolus versicolor: in vitro and in vivo studies.  Res Commun Mol Pathol Pharmacol. 1996;  92 140-8
  • 49 Misaki A, Kakuta M, Sasaki T, Tanaka M, Miyaji H. Studies on interrelation of structure and antitumor effects of polysaccharides: antitumor action of periodate-modified, branched (1→ 3)-β-D-glucan of Auricularia auricula-judae, and other polysaccharides containing (1→ 3)-glycosidic linkages.  Carbohydr Res. 1981;  92 115-29
  • 50 Kiho T, Shiose Y, Nagai K, Ukai S. Polysaccharides in fungi. XXX. Antitumor and immunomodulating activities of two polysaccharides from the fruiting bodies of Armillariella tabescens .  Chem Pharm Bull (Tokyo). 1992;  40 2110-4
  • 51 Lee S S, Wei Y H, Chen C F, Wang S Y, Chen K Y. Antineoplastic effects of Ganodermal ucidum .  J Chin Med. 1995;  6 1-12
  • 52 Li J F, Guo J W, Huang X F. Study on the enhancing effect of Polyporus polysaccharide, Mycobacterium polysaccharide and lentinan on lymphokine-activated killer cell activity in vitro Chin J Integr Trad West Med.  1996;  16 224-6
  • 53 Li J F, Huang X F, Lin B Y. The effects on NK and endogenous LAK activities of splenic cells in mice by Polyporus polysaccharide in vivo .  Chin J Microbiol Immunol. 1995;  15 89-91
  • 54 Wu G S, Zhang L Y, Okuda H. Inhibitive effect of Umbellatus polyporus polysaccharide on cachexic manifestation induced by toxohormone-L in rats.  Chin J Integr Trad West Med. 1997;  17 232-3
  • 55 Chihara G, Hamuro I, Maeda Y, Arai Y, Fukuoka F. Antitumor polysaccharide derived chemically from natural glucan (pachyman).  Nature. 1970;  225 943-4
  • 56 Kanayama H, Togami M, Adachi N, Fukai Y, Okumoto T. Studies on the antitumor active polysaccharides from the mycelia of Poria cocos Wolf. III. Antitumor activity against mouse tumors.  Yakugaku Zasshi. 1986;  106 307-12
  • 57 Gao Q P, Jiang R Z, Chen H Q, Jensen E, Seljelid R. Characterization and cytokine stimulating activities of heteroglycans from Tremella fuciformis .  Planta Med. 1996;  62 297-302
  • 58 Gao Q, Killie M K, Chen H, Jiang R, Seljelid R. Characterization and cytokine-stimulating activities of acidic heteroglycans from Tremella fuciformis .  Planta Med. 1997;  63 457-60
  • 59 Xia D, Lin Z B. Effects of Tremella polysaccharides on immune function in mice.  Acta Pharmacol Sin. 1989;  10 453-7
  • 60 Tomoda M, Shimizu N, Ohara N, Gonda R, Ishii S, Otsuki H. A reticuloendothelial system-activating glycan from the roots of Astragalus membranaceus .  Phytochemistry. 1991;  31 63-6
  • 61 Fang S D, Chen Y, Xu X Y, Ye C Q, Zhai S K, Shen M L. Studies of the active principles of Astragalus mongholicus Bunge. I. Isolation, characterization and biological effect of its polysaccharides. Org Chem 1982: 26-31
  • 62 Huang Q S, Lu G B, Li Y C, Guo J H, Wang R X. Studies on the polysaccharides of “Huang Qi” (Astragalus mongholicus Bunge).  Acta Pharm Sin. 1982;  17 200-6
  • 63 Shimizu N, Tomoda M, Kanari M, Gonda R. An acidic polysaccharide having activity on the reticuloendothelial system from the root of Astragalus mongholicus .  Chem Pharm Bull (Tokyo). 1991;  39 2969-72
  • 64 Toshino S, Tabata T, Hazama S M, Iizuka N, Yamamoto K, Hirayama M, et al. Immunoregulatory effects of the antitumor polysaccharide lentinan on Th1/Th2 balance in patients with digestive cancers.  Anticancer Res. 2000;  20C 4707-11
  • 65 Chang C Y, Hou Y D, Xu F M. Effects of Astragalus membranaceus on enhancement of mouse natural killer cell activity.  Acta Acad Med Sin. 1983;  5 231-4
  • 66 Tu W W, Yang Y Q, Wang L J, Zhang Y W, Shen J. In vivo effects of Astragalus membranaceus on immunoglobulin G subclass deficiency.  Chin J Immunol. 1995;  11 34-7
  • 67 Wang D Y, Li C Y, Pong D W. Effect of Astragalus polysaccharide on RNase and RNase inhibitor.  Acta Biochem Biophys Sin. 1984;  16 285-90
  • 68 Chu D T, Wong W L, Mavligit G M. Immunotherapy with Chinese medicinal herbs. II. Reversal of cyclophosphamide-induced immune suppression by administration of fractionated Astragalus membranaceus in vivo .  J Chin Lab Immunol. 1988;  25 125-9
  • 69 Chen L J, Shen M L, Wang M Y, Zhai S K, Liu M Z. Effect of Astragalus polysaccharides on phagocytic function in mice.  Acta Pharmacol Sin. 1981;  2 200-4
  • 70 Zhao K W, Kong H Y. Effect of Astragalan on secretion of tumor necrosis factors in human peripheral blood mononuclear cells.  Chin J Integr Trad West Med. 1993;  13 263-5, 259
  • 71 Ma D, Cai G R, Liu C M. Inhibitory effect of Astragalus membranaceus and Acanthopanax senticosus on proliferation of human ovarian cancer cells in vitro .  Tumor. 1992;  12 51-2
  • 72 Lau B H, Ruckle H C, Botolazzo T, Lui P D. Chinese medicinal herbs inhibit growth of murine renal cell carcinoma.  Cancer Biother. 1994;  9 153-61
  • 73 Yang H X, Zhao G. Death and apoptosis of LAK cell during immunologic assault and the rescuing effects of APS.  Chin J Clin Oncol. 1998;  25 669-72
  • 74 Cha R J, Zeng D W, Chang Q S. Non-surgical treatment of small cell lung cancer with chemo-radio-immunotherapy and traditional Chinese medicine.  Chin J Int Med. 1994;  33 462-6
  • 75 Wang D C. Influence of Astragalus membranaceus (AM) polysaccharide FB on immunologic function of human periphery blood lymphocyte.  Chin J Oncol. 1989;  11 180-3
  • 76 Chu D T, Wong W L, Mavligit G M. Immunotherapy with Chinese medicinal herbs. I. Immune restoration of local xenogeneic graft-versus-host reaction in cancer patients by fractionated Astragalus membranaceus in vitro .  J Chin Lab Immunol. 1988;  25 119-23
  • 77 He J, Zhang S H. Isolation and composition of Lycium barbarum polysaccharides.  Chin Pharm J (Beijing). 1996;  31 716-20
  • 78 Tian G Y, Wang C. Structure elucidation of a high MW glycan of a glycoprotein isolated from the fruit of Lycium barbarum L.  Acta Biochimica Biophysica Sinica. 1995;  27 493-8
  • 79 Zhao C J, He Y Q, Li R Z, Cui G H. Chemistry and pharmacological activtiy of peptidoglycan from Lycium barbarum .  Chin Chem Lett. 1996;  7 1009-10
  • 80 Gan L, Zhang S. Determination of four fractions of Lycium barbarum polysaccharides in different varieties.  J Chin Med Mater. 2001;  24 107-8
  • 81 Du S Y, Qian Y K. Effect of extract of Lycium barbarum on the IL-2R expression of humen lymphocytes.  Chin J Microbiol Immunol. 1995;  15 176-8
  • 82 Sun W J, Sui D Y, Yu X F, Lu Z Z, Hou C Z. Pharmacological studies of polysaccharide-proteins from Lycium barbarum .  J Norman Bethune Univ Med Sci. 1996;  22 486-7
  • 83 Geng C S, Xing S T, Zhou J H, Chu B M. Enhancing effect of Lycium barbarum polysaccharides on the interleukin-2 activity in mice.  Chin J Pharmacol Toxicol. 1989;  3 175-9
  • 84 Zhang X, Li J, Liang H B, Wang L, Qian Y K. Effects of Lycium barbarum polysaccharide on the cell membrane fruidity and protein kinase C in vitro .  J Beijing Med Univ. 1997;  29 118-20
  • 85 Zhang X, Xiang S L, Cui X Y, Qian Y K. Effects of Lycium barbarum polysaccharide (LBP) on lymphocyte signal transduction system in mice.  Chin J Immunol. 1997;  13 289-92
  • 86 Geng C S, Wang G Y, Lin Y D, Xin S T, Zhou J H. The effect of barbary wolfberry (Lycium barbarum) polysaccharide on [3H]thymidine incorporation into splenic lymphocytes and on suppressor T-lymphocytes in mice.  Chin Trad Herbal Drugs. 1988;  19 313-5
  • 87 Cao G W, Du P. Influence of Lycium barbarum polysaccharides and interleukin-2 in vivo on the induction of two kinds of LAK cells from aged mice in vitro .  Chin J Microbiol Immunol. 1992;  12 390-2
  • 88 Wang B X, Xing S T, Zhou J H. Effect of Lycium barbarum polysaccharides on the immune responses of T, CTL and NK cells in normal and cyclophosphamide-treated mice.  Chin J Pharmacol Toxicol. 1990;  4 39-43
  • 89 Cao G W, Yang W G, Du P. Observation of the effects of LAK/IL-2 therapy combining with Lycium barbarum polysaccharides in the treatment of 75 cancer patients.  Chin J Oncol. 1994;  16 428-31
  • 90 Liu J N, Cheng B Q, Zhang J R, Tan X R, Ji Y Z. Effect of Lycium polysaccharide on immune responses of cancer patients following radiotherapy.  Zhonghua Fangshe Yixue Yu Fanghu Zazhi. 1996;  16 18-20
  • 91 Sun W J, Xu W L, Zhang Y X, Huang R H, Duan G S. Therapeutic effects of Lycium barbarum polysaccharides in combination with irradiation and carmustine in G422 tumor-bearing mice.  Chin J Clin Oncol. 1994;  21 930-2
  • 92 Lu C X, Cheng B Q. Radiosensitizing effects of Lycium barbarum polysaccharide for Lewis lung cancer.  Chin J Integr Trad West Med. 1991;  11 611-2
  • 93 Liu J L, Zhang L H, Qian Y K. Tumor inhibition of Lycium barbarum polysaccharide on S180-bearing mice.  Chin J Immunol. 1996;  12 115-7
  • 94 Zhang S J, Zhang S Y. Polysaccharides of Dangshen (Codonopsis pilosula).  Chin Trad Herbal Drugs. 1987;  18 98-100
  • 95 Shan B E, Yoshida Y, Sugiura T, Yamashita U. Stimulating activity of Chinese medicinal herbs on human lymphocytes in vitro .  Int J Immunopharmacol. 1999;  21 149-59
  • 96 Mao X L, Zhou Y. Preliminary study of the effects of extract of Codonopsis pilosula on immunological functions of normal and immunosuppressed mice introduced by cyclophosphamide.  Chin J Integr Trad West Med. 1985;  5 739-41
  • 97 Hu S K. Effect of the combination of Codonopsis pilosula and cyclophosphamide on the transplantable tumor and tumor-bearing mice.  Chin J Integr Trad West Med. 1985;  5 618-21
  • 98 Zeng X L, Li X A, Zhang B Y. Immunological and hematopoietic effect of Codonopsis pilosula on cancer patients during radiotherapy.  Chin J Integr Trad West Med. 1992;  12 607-8, 581
  • 99 Wang R H, Zhang S, Chen X, Shen B F. Inhibition of protein synthesis in cell-free system by single chain ribosome-inactivating proteins.  Chin Biochem J. 1992;  8 395-9
  • 100 Wang Y, Gu Z W, Ye G J, Sun X J, Wang Q H, Jin S W. Revision of the primary structure of trichosanthin and study on the trichosanthin from different places of origin.  Acta Chim Sin. 1993;  51 1023-9
  • 101 Wu T W, Pang K C, Wu C C, Wu H T, Chang Y M, Ni C C, et al. Growth of single crystals and determination of unit-cell parameters for trichosanthin.  Kexue Tongbao. 1978;  23 176-8
  • 102 Dong T X, Ng T B, Yeung H W, Wong R NS. Isolation and characterization of a novel ribosome-inactivating protein, β-kirilowin, from the seeds of Trichosanthes kirilowii .  Biochem Biophys Res Commun. 1994;  199 387-93
  • 103 Wong R NS, Dong T X, Ng T B, Choi W T, Yeung H W. α-Kirilowin, a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii (family Cucurbitaceae): a comparison with β-kirilowin and other related proteins.  Int J Pept Protein Res. 1996;  47 103-9
  • 104 Gu Y, Chen W, Xia Z. Molecular modeling of the interactions of trichosanthin with four substrate analogs.  J Protein Chem. 2000;  19 291-7
  • 105 Gu Y J, Xia Z X. Crystal structures of the complexes of trichosanthin with four substrate analogs and catalytic mechanism of RNA N-glycosidase.  Proteins. 2000;  39 37-46
  • 106 Nie H, Cai X, He X, Xu L, Ke K, Ke Y, et al. Position 120 - 123, a potential active site of trichosanthin.  Life Sci. 1998;  62 491-500
  • 107 Xi Z D, Ma B L, Yang L M, Cao H N, Wang M. Active site of trichosanthin acting as a ribosome-inactivating protein.  Acta Pharmacol Sin. 1997;  18 447-51
  • 108 Mulot S, Chung K K, Li X B, Wong C C, Ng T B, Shaw P C. The antigenic sites of trichosanthin a ribosome-inactivating protein with multiple pharmacological properties.  Life Sci. 1997;  61 2291-303
  • 109 Shaw P C, Chan W L, Yeung H W, Ng T B. Minireview: trichosanthin - a protein with multiple pharmacological properties.  Life Sci. 1994;  55 253-62
  • 110 Takemoto D J. Effect of trichosanthin, an anti-leukemia protein on normal mouse spleen cells.  Anticancer Res. 1998;  18(A) 357-61
  • 111 Lu P X, Jin Y C. Trichosanthin in the treatment of hydatidiform mole.  Clinical analysis of 52 cases. Chin Med J (Engl Ed). 1990;  103 183-5
  • 112 Zhang C Y, Gong Y X, Ma H, An C C, Chen D Y. Trichosanthin induced calcium-dependent generation of reactive oxygen species in human choriocarcinoma cells.  Analyst. 2000;  125 1539-42
  • 113 Ru Q H, Luo G A, Liao J J, Liu Y. Capillary electrophoretic determination of apoptosis of HeLa cells induced by trichosanthin.  J Chromatogr A. 2000;  894 165-70
  • 114 Zhang R P, Xu C J, Cao H T, Ji R H, Zhang Z C. In vitro inhibition of trichosanthin-conjugate on human melanoma cells.  Chin J Immunol. 1993;  9 348-51
  • 115 Wang Q C, Ying W B, Xie H, Zhang Z C, Yang Z H, Ling L Q. Trichosanthin-monoclonal antibody conjugate specifically cytotoxic to human hepatoma cells in vitro .  Cancer Res. 1991;  51 3353-5
  • 116 Gao H L, Zhou G Y, Lu D Y, Zhang W Y. Trichosanthin - CEA Mab conjugate cytotoxic to human colon carcinoma.  Chin J Immunol. 1992;  8 300-3
  • 117 Islam M R, Nishida H, Funatsu G. Complete amino acid sequence of luffin-α, a ribosome-inactivating protein from the seeds of Luffa cylindrica .  Agric Biol Chem. 1990;  54 1343-5
  • 118 Chen R S, Leung H W, Dong Y C, Wong R N. Modeling of the three-dimensional structure of luffin-α and its stimulated reaction with the substrate oligoribonucleotide GAGA.  J Protein Chem. 1996;  15 649-57
  • 119 Kataoka J, Habuka N, Miyano M, Masuta C, Koiwai A. Nucleotide sequence of cDNA encoding β-luffin, another ribosome-inactivating protein from Luffa cylindrica .  Plant Mol Biol. 1993;  19 887-9
  • 120 Gao W, Ling J, Zhong X, Liu W, Zhang R, Yang H, et al. Luffin-S: a small novel ribosome-inactivating protein from Luffa cylindrica. Characterization and mechanism studies.  FEBS Lett. 1994;  347 257-60
  • 121 Ng T B, Chan W Y, Yeung H W. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants.  Gen Pharmacol. 1992;  23 579-90
  • 122 Poma A, Marcozzi G, Cesare P, Carmignani M, Spano L. Antiproliferative effect and apoptotic resonse in vitro of human melanoma cells to liposomes containing the ribosome-inactivating protein luffin.  Biochim Biophys Acta. 1999;  1472 197-205
  • 123 Poma A, Miranda M, Spano L. Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin.  Melanoma Res. 1998;  8 465-7
  • 124 Huang B, Ng T B, Fong W P, Wan C C, Yeung H W. Isolation of a trypsin inhibitor with deletion of N-terminal pentapeptide from the seeds of Momordica cochinchinensis, the Chinese drug mubiezhi.  Int J Biochem Cell Biol. 1999;  31 707-15
  • 125 Hernandez J F, Gagnon J, Chiche L, Nguyen T M, Andrieu J P, Heitz A, et al. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure.  Biochemistry. 2000;  39 5722-30
  • 126 Zhang A H, Tang S, Liu W. Substrate-structure dependence of ribotoxins on cleaving RNA in C. camphora ribosome.  J Nat Toxins. 2001;  10 119-25
  • 127 Xu Y Z, Li Y J, Hu H Y, Hu R, Wu H, Liu W Y. Adenine nucleotide N-glycosidase activity of the A-chain of cinnamomin characterized by 1H-nuclear magnetic resonance.  Biol Chem. 2000;  381 447-51
  • 128 Ruan J P, Chen W F, Liu W Y. Promotion of ATP and S-140 to ribosome inactivation with camphorin, cinnamomin, and other RNA N-glycosidases.  Acta Pharmacol Sin. 1998;  19 261-4
  • 129 Li X D, Chen W F, Liu W Y, Wang G H. Large-scale preparation of two new ribosome-inactivating proteins-cinnamomin and camphorin from the seeds of Cinnamomum camphora .  Protein Expr Purif. 1997;  10 27-31
  • 130 Kurinov I V, Mao C, Irvin J D, Uckun F M. X-ray crystallographic analysis of pokeweed antiviral protein-II after reductive methylation of lysine residues.  Biochem Biophys Res Commun. 2000;  275 549-52
  • 131 Ferens W A, Hovde C J. Antiviral activity of shiga toxin 1: suppression of bovine leukemia virus-related spontaneous lymphocyte proliferation.  Infect Immun. 2000;  68 4462-9
  • 132 Schlick J, Dulieu P, Desvoyes B, Adami P, Radom J, Jouvenot M. Cytotoxic activity of a recombinant GnRH-PAP fusion toxin on human tumor cell lines.  FEBS Lett. 2000;  472 241-6
  • 133 Waurzyniak B, Schneider E A, Tumer N, Yanishevski Y, Gunther R, Chelstrom L M, et al. In vivo toxicity, pharmacokinetics, and antileukemic activity of TXU (anti-CD7)-pokeweed antiviral protein immunotoxin.  Clin Cancer Res. 1997;  3 881-90
  • 134 Zhong R K, van De Winkel J G, Thepen T, Schultz L D, Ball E D. Cytotoxicity of anti-cd64-ricin a chain immunotoxin against human acute myeloid leukemia cells in vitro and in scid mice.  J Hematother Stem Cell Res. 2001;  10 95-105
  • 135 van Oosterhout Y V, van Ernst J L, Bakker H H, Preijers F W, Schattenberg A V, Ruiter D J, et al. Production of anti-CD3 and anti-CD7 ricin A-immunotoxins for a clinical pilot study.  Int J Pharm. 2001;  221 175-86
  • 136 Schindler J, Sausville E, Messmann R, Uhr J W, Vitetta E S. The toxicity of deglycosylated ricin A chain-containing immunotoxins in patients with non-Hodgkin's lymphoma is exacerbated by prior radiotherapy: a retrospective analysis of patients in five clinical trials.  Clin Cancer Res. 2001;  7 255-8
  • 137 Longo D L, Duffey P L, Gribben J G, Jaffe E S, Curti B D, Gause B L, et al. Combination chemotherapy followed by an immunotoxin (anti-B4-blocked ricin) in patients with indolent lymphoma: results of a phase II study.  Cancer J Sci Am. 2000;  6 146-50
  • 138 Messmann R A, Vitetta E S, Headlee D, Senderowicz A M, Figg W D, Schindler J, et al. A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma.  Clin Cancer Res. 2000;  6 1302-13
  • 139 Schnell R, Vitetta E, Schindler J, Borchmann P, Barth S, Ghetie V, et al. Treatment fo refractory Hodgkin's lymphoma patients with an anti-CD25 rich A-chain immunotoxin.  Leukemia. 2000;  14 129-35
  • 140 Grossbard M L, Multani P S, Freedman A S, O'Day S, Gribben J G, Rhuda C, et al. A Phase II study of adjuvant therapy with anti-B4-blocked ricin after autologous bone marrow transplantation for patients with relapsed B-cell non-Hodgkin's lymphoma.  Clin Cancer Res. 1999;  5 2392-8

3 Part I. Low Molecular Compounds: Planta Med 2003: 69: 97 - 108

Dr. Barbara Bertram

Div. Toxicology and Cancer Risk Factors

Deutsches Krebsforschungszentrum

D-69120 Heidelberg

Phone: +49 (0)6221 423030

Fax: +49 (0)6221 423031

Email: b.bertram@dkfz.de

Zoom Image

Fig. 1 Primary structure of trichosanthin.