Planta Med 2011; 77(6): 641-646
DOI: 10.1055/s-0030-1250642
Tropical Diseases
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Buruli Ulcer: A Review of In Vitro Tests to Screen Natural Products for Activity against Mycobacterium ulcerans

Achille Yemoa1 , Joachim Gbenou2 , Dissou Affolabi3 , Mansourou Moudachirou2 , André Bigot1 , Séverin Anagonou3 , Françoise Portaels4 , Joëlle Quetin-Leclercq5 , Anandi Martin4
  • 1UFR Pharmacie, Faculté des Sciences de Santé Université d'Abomey Calavi (UAC), Cotonou, Bénin
  • 2Laboratoire de Pharmacognosie et des Huiles Essentielles (LAPHE), Cotonou, Bénin
  • 3Laboratoire de Référence des Mycobactéries (LRM), Cotonou, Bénin
  • 4Institute of Tropical Medicine (ITM), Microbiology Department, Mycobacteriology Unit, Antwerpen, Belgium
  • 5Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy Research Group, Bruxelles, Belgium
Weitere Informationen

Achille Yemoa

Unité de Formation et de Recherche en Pharmacie
Faculté des Sciences de Santé Université d'Abomey Calavi (UAC)

04 BP 494 Cotonou

Bénin

Telefon: +22 9 97 07 82 07

eMail: ayemoa@yahoo.fr

Publikationsverlauf

received July 14, 2010 revised Nov. 25, 2010

accepted Nov. 27, 2010

Publikationsdatum:
14. Januar 2011 (online)

Inhaltsübersicht #

Abstract

Buruli ulcer (BU), caused by Mycobacterium ulcerans, has recently been recognized by the World Health Organization (WHO) as an important emerging disease. It is largely a problem of the poor in remote rural areas and has emerged as an important cause of human suffering. While antimycobacterial therapy is often effective for the earliest nodular or ulcerative lesions, for advanced ulcerated lesions, surgery is sometimes necessary. Antimycobacterial drugs may also prevent relapses or disseminated infections. Efficient alternatives different from surgery are presently explored because this treatment deals with huge restrictive factors such as the necessity of prolonged hospitalization, its high cost, and the scars after surgery. Traditional treatment remains the first option for poor populations of remote areas who may have problems of accessibility to synthetic products because of their high cost. The search for efficient natural products active on M. ulcerans should then be encouraged because they are part of the natural heritage of these populations; they are affordable financially and can be used at the earliest stage. This review provides a number of tests that will help to evaluate the antimycobacterial activity of natural products against M. ulcerans, which are adapted to its slow growing rate, and lists active extracts published up to now in Medline.

#

Introduction

Buruli ulcer (BU) is a skin disease caused by Mycobacterium ulcerans. It usually begins as a painless nodule or papule and may progress to a massive skin ulceration. If untreated, BU may lead to extensive soft tissue destruction that may extend to the deep fascia and sometimes to the bones. BU was recently recognized by the World Health Organization (WHO) as an important emerging disease [1].

The disease has been reported in many countries, mostly tropical, in Africa, North America (Mexico), South America, Southeast Asia, and Oceania. Recent reports have suggested increased incidences of BU in, for example, some areas of Bénin [2], Australia [3], and Ivory Coast [4].

Early, limited M. ulcerans infection can be safely and effectively managed by antimycobacterial treatment alone, without surgical debridement. The drug regimen proposed by WHO, consisting of 8 weeks of streptomycin and rifampicin, is effective for early lesions [5], [6], [7]. Surgery seems, however, necessary for some severe forms of the disease (large ulcerated forms, disseminated forms, and osteomyelitis) [8]. This surgical treatment can only be used in a few medical centers with proper and adequate equipment and is neither affordable nor accessible to an important part of the population [9].

Traditional treatment remains the first option for patients with generally low resources [9], [10]. Two previous studies performed in Bénin have described this kind of treatment; notably its cultural context and different forms. We recently observed that most components in this treatment belong to the vegetal kingdom [11]. However, in vitro evaluation of the activities of the natural products used is not documented enough. To our knowledge, only one previous study performed in the Ivory Coast evaluated the in vitro antimycobacterial activity of total aqueous extracts of Sacoglottis gabonensis (Humiriaceae) and Okoubaka aubrevillei (Octoknemataceae) versus seven strains of M. ulcerans from different geographical origins [12].

The purpose of this review is to inventory in vitro tests that can be used to screen natural products for their antimycobacterial activity against M. ulcerans and present our first results. We focused our literature search on publications on Medline PubMed (NCBI) database dealing with the evaluation of activities of natural products against M. ulcerans and limited it to papers published in English or in French. Key words used were “natural products”, “antimycobacterial screening”, “Buruli ulcer”, “Mycobacterium ulcerans”, “drugs susceptibility test”, “mycobacteria”, or/and “plant”. All retrieved titles and abstracts were scrutinized for relevant studies that are discussed here. We only found one publication [12] dealing with the evaluation of the activity of natural products against M. ulcerans.

Natural antimycobacterial products may be of great importance in the early treatment of BU, preventing the spread of the disease at an affordable cost for the local population. Antimicrobial activity of natural products and pure compounds can be detected by observing the growth response of various microorganisms that are placed in contact with them. Several methods for detecting activity are available, but since they are not equally sensitive or not based upon the same principle, results will be profoundly influenced by the method [13].

The methods used to test antibacterial activity are classified into three main groups, i.e., diffusion, dilution, and radiorespirometry method [14]. These methods are discussed in this review. As M. ulcerans has a slow growing rate and a tendency to clump in liquid medium, these general methods must be adapted to give sensitive and reliable results in an acceptable period of time. In our laboratory, we adapted the proportion method on Löwenstein Jensen (LJ) medium, using Middlebrook 7H11 agar and Resazurin Microtiter Assay (REMA), to investigate the antimycobacterial activity against M. ulcerans of 44 plants (see [Table 1]) employed in traditional medicine in Bénin to treat BU.

Table 1 Plant materials used for antimycobacterial activity screening and MIC values of their ethanol extracts.

Voucher specimen

Family name

Scientific name

Plant parts

MIC (µg/mL)

Yemoa 1

Anarcadiaceae

Lannea kerstingii Engl. et K. Krause

leaves

> 250

Yemoa 2

Anarcadiaceae

Spondias mombin Linn

stem bark

> 250

Yemoa 3

Annonaceae

Xylopia aethiopica (Dunal) A. Rich

fruit

> 250

Yemoa 4

Annonaceae

Monodora myristica (Gaertn) Dunal

seeds

> 250

Yemoa 5

Apocynaceae

Strophanthus hispidus DC

root

> 250

Yemoa 6

Apocynaceae

Holarrhena floribunda (G. Don) T. Durand et Schinza

leaves

125

Yemoa 7

Araceae

Anchomanes difformis Engl

rhizome

> 250

Yemoa 8

Asteraceae

Launaea taraxacifolia (Wild.) Schum

leaves

> 250

Yemoa 9

Asteraceae

Vernonia amygdalina Del

leaves

> 250

Yemoa 10

Bignoniaceae

Spathodea campanulata (P. Beauv)

stem bark

> 250

Yemoa 11

Bignoniaceae

Stereospermmum kunthianum (Cham)

root

> 250

Yemoa 12

Bignoniaceae

Newbouldia laevis (P. Beauv) Seeman

root

> 250

Yemoa 13

Caesalpinaceae

Erythrophleum suaveolens (Guill et Perr.) Brenan

stem bark

> 250

Yemoa 14

Caesalpinaceae

Piliostigma thonningii (K. Schum.) Milne-Redh

leaves

> 250

Yemoa 15

Capparaceae

Ritchiea capparoides (Andrews) Britten

root

> 250

Yemoa 16

Chenopodiaceae

Chenopodium ambrosioides Linn

leaves

> 250

Yemoa 17

Clusiaceae

Garcinia kola Heckel

root

> 250

Yemoa 18

Combretaceae

Anogeissus leiocarpus (DC.) Guill et Perr

leaves

> 250

Yemoa 19

Combretaceae

Terminalia glaucescens Planch

bark/root

> 250

Yemoa 20

Crassulaceae

Bryophyllum pinnatum (Lam.) Okem

leaves

> 250

Yemoa 21

Cucurbitaceae

Kedrostis foedissima (Jacq.) Cogn.

leaves

> 250

Yemoa 22

Euphorbiaceae

Euphorbia kamerunica Pax

bark

> 250

Yemoa 23

Euphorbiaceae

Hymenocardia acida Tul

bark

> 250

Yemoa 24

Euphorbiaceae

Bridellia ferruginea Benth

bark

> 250

Yemoa 26

Euphorbiaceae

Jatropha curcas Linna

leaves

250

Yemoa 27

Euphorbiaceae

Jatropha gossypifolia Linn

leaves

> 250

Yemoa 28

Fabaceae

Lonchocarpus cyanescens (Schum. et Thonn.) Benth

root

> 250

Yemoa 29

Lamiaceae

Ocimum gratissimum Linn

leaves

> 250

Yemoa 30

Lamiaceae

Ocimum canum Sims

leaves

> 250

Yemoa 31

Liliaceae

Allium cepa Linn

bulb

> 250

Yemoa 32

Liliaceae

Aloë buettneri A. Berger

leaves

> 250

Yemoa 33

Melastomataceae

Dissotis rotundifolia (Sm.) Triana

leaves

> 250

Yemoa 34

Mimosaceae

Tetrapleura tetraptera (Schum. et Thonn.) Taub.

fruit

> 250

Yemoa 35

Moraceae

Ficus exasperata Vahl.

leaves

> 250

Yemoa 37

Myrtaceae

Eugenia aromatica (Linn.) Baill

fruit

> 250

Yemoa 38

Nyctagynaceae

Boerrhavia erecta Linn

leaves

> 250

Yemoa 39

Periplocaceae

Parquetina nigrescens (Afzel.) Bullock

leaves

> 250

Yemoa 40

Piperaceae

Piper guineense Schum. et Thonn.

seeds

> 250

Yemoa 41

Poaceae

Eleusine indica Linn

plant

> 250

Yemoa 44

Rutaceae

Clausena anisata (Wild.) Hook. f.

root

> 250

Yemoa 45

Sapindaceae

Paullinia pinnata Linn

leaves

> 250

Yemoa 46

Sapotaceae

Vitellaria paradoxa Gaertner

leaves

> 250

Yemoa 48

Zingiberaceae

Aframomum melegueta K. Schum

fruit

> 250

Yemoa 49

Zingiberaceae

Curcuma longa L.

leaves

> 250

a Yemoa 36, 42, 43, 47, are not tested here for their antimycobacterial activity

#

Compound Handling and Storage

The most frequently used solvents to prepare test products solutions include dimethyl sulfoxide (DMSO), methanol, and ethanol. The latter two, however, have the disadvantage of rapid evaporation whereby the stated concentration of stock solutions cannot be maintained. They also have an inhibitory effect on the growth of mycobacteria. Solutions in 100 % DMSO have become the standard. Added advantages of stock solutions in 100 % DMSO are: (1) elimination of microbial contamination, thereby reducing the need for sterilization by autoclaving which can affect the quality of the test product, and (2) good compatibility with test automation and integrated screening platforms, assuring, for example, good solubility during the serial dilution procedures [13]. It is important to note that DMSO is potentially toxic for cells and many microorganisms including M. ulcerans. Then, in order to avoid later interference in the biological test systems, the in-test concentration of DMSO should not exceed 0.625 %. In practical terms, this entails the need for inclusion of an intermediate dilution step in water. Because of the variability of individual compounds, there are no general storage conditions that guarantee sample integrity [15]. A practical recommendation for storage of natural products is either without solvent for long-term storage or in 100 % DMSO at −20 °C with minimal exposure to freeze-thaw cycles and humidity.

#

Growth medium

LJ is a conventional growth culture medium for M. ulcerans. Middlebrook 7H11 agar, Middlebrook 7H9, and Middlebrook 7H12 liquid media are also convenient for the tests. M. ulcerans optimally grows between 30 and 33 °C. The incubation period depends on the culture medium used. Tubes are read within 2 to 3 weeks (with Middlebrook 7H12), after 28 and 42 days of incubation (with Middlebrook 7H11 agar), or 72 to 81 days (with LJ), and plates are read after 15 days (with Middlebrook 7H9).

#

Inoculum

The standardization of the bacterial cell number used for susceptibility testing is of critical importance for obtaining accurate and reproducible results. Inoculum concentration can have a profound influence on the antimycobacterial potency of a natural product, endorsing the need for standardization of inoculates [16]. Fresh colonies of M. ulcerans are collected from the LJ medium and suspended in distilled water; the turbidity of the resulting suspensions is then adjusted with distilled water to match that of a standard 1 mg/mL suspension of M. bovis BCG (containing approximately 108 CFU per mL), after which the suspensions are further diluted to 10−1 and 10−2 mg/mL. The inocula are 0.1 mL of diluted solutions [17].

#

Antimycobacterial Assays

#

Agar diffusion

The agar diffusion assays were first developed for bacteria [18]. Agar diffusion techniques have been widely used to assay plant extracts for antimicrobial activity but have limitations. Disk methods consist of the placing of filter paper disks containing test compounds, at a known concentration, on agar plate surfaces previously inoculated with the bacteria. Plant extracts diffuse into the agar and inhibit growth of the bacteria. After incubation, the diameter of the clear zone (growth inhibition) is measured at the end of the incubation period.

In order to enhance the detection limit, the inoculated system is kept in an incubator at 30–33 °C during 42 days concerning Mycobacterium ulcerans.

The common disc or well-diffusion assays employed in many antimicrobial assays of natural products are not quantitative when used to evaluate new natural products, but are merely an indication that there is growth inhibition at some unknown concentration along the concentration gradient [19]. However, the agar disk diffusion technique can only be used for drug susceptibility testing of pure substances because when it is applied to mixtures, results may be unreliable [20].

Recently, a M. marinum inhibition zone assay was developed as a model to evaluate antitubercular or antimycobacterial activity of natural products from marine organism extracts [21].

The major disadvantage of using diffusion assays to evaluate activity of natural products against M. ulcerans is that mycobacteria, having a very lipid-rich, hydrophobic cell wall, are often more susceptible to less-polar compounds [22]. Nonpolar compounds will diffuse more slowly than polar compounds in the agar medium and, thus, give a weaker activity. So the diffusion method is not appropriate for testing nonpolar samples or samples that do not easily diffuse into agar. In general, the relative antimicrobial potency of different samples may not always be compared, mainly because of differences in physical properties, such as solubility, volatility, and diffusion characteristics in agar. Furthermore, agar-diffusion methods are difficult to run on a high-capacity screening.

#

Radiorespirometry method

The growth or inhibition of M. ulcerans can be determined in a liquid Middlebrook 7H12 medium within 2 to 3 weeks by the extent of oxidation of [1-14C] palmitic acid to 14CO2 which is measured in the automated radiometric BACTEC 460 instrument [23], [24]. Because of the quantitative nature of the data obtained in this assay, the relative activity of various samples can be compared by testing at only 1 or 2 concentrations and determining a percent inhibition of 14CO2 production compared to product-free controls [25]. Alternatively, multiple concentrations can be tested and MIC calculated [26]. Newer non-radiometric clinical automated systems use indicators of oxygen consumption [27], carbon dioxide production [28], or head space pressure [29] to determine growth/inhibition.

Tests performed in the BACTEC 460 system are costly and not suited for the evaluation of large numbers of compounds. The major disadvantages of these assays are the cost and the isotope disposal in low-income countries.

#

Dilution methods

Dilution tests can be applied in solid (agar dilution) or liquid (broth dilution) media. Agar dilution and broth dilution are the most commonly used techniques to determine the minimal inhibitory concentration (MIC) of antimicrobial agents, including antibiotics and other substances that kill (bactericidal activity) or inhibit the growth (bacteriostatic activity) of bacteria. The results obtained allow a quantitative estimate of antimicrobial activity.

In the dilution methods, test products are mixed with a suitable medium that will be inoculated with the test organism. It can be carried out in liquid (7H9) as well as on solid media (7H11, LJ). On solid media, growth of the microorganism can be measured by counting the number of colonies. In the agar-dilution method, the minimal inhibitory concentration (MIC) is defined as the lowest concentration able to inhibit any visible microbial growth. In liquid or broth-dilution methods, turbidity and redox-indicators are most frequently used. Turbidity can be estimated visually or obtained more accurately by measuring the optical density. However, test products that are not fully soluble may interfere with turbidity readings, emphasizing the need for a negative control or sterility control, i.e., natural products dissolved in blank medium without microorganisms. Measurements can be obtained with a microplate-reader, but visual reading may also be used in cases where spectrophotometry is not available. Another assay exploits the principle that only living cells convert fluorescein-diacetate to fluorescein, producing a yellowish-green fluorescence under UV light [30]. However, it requires a more significant investment in equipment, and validation is not easy. Fluorescent constituents present in crude natural products extracts may also interfere [31].

In general, dilution methods are appropriate for assaying polar and nonpolar products for determination of MIC on M. ulcerans.

Agar dilution: Agar dilution involves the incorporation of different concentrations of extract into a nutrient agar medium followed by the application of a standardized inoculum of bacteria to the surface of the agar tube. After incubation, the presence of bacterial colonies on the medium indicates growth of the organism. Testing of known concentrations of extracts, fractions, or compounds in an agar medium allows for the quantitation of activity and the determination of an MIC.

M. ulcerans grows well on Middlebrook 7H11 agar supplemented with oleic acid, albumin, dextrose, and catalase, if incubated with CO2. The main disadvantage with such assays is the requirement of at least 28 days to visually detect the growth of colonies [17].

Micro broth dilution: The growth of M. ulcerans can be quantitated by measuring turbidity in a liquid medium; the tendency of mycobacteria to clump makes this test difficult. In addition, crude extracts may also impart some turbidity to the medium, making interpretation of results difficult. The use of alamar blue (an oxidation/reduction indicator dye) makes this test rapid and sensitive. Microplate alamar blue assay (MABA) results can be read visually without the use of instrumentation [32]. The reduced form of alamar blue can be quantitated colorimetrically by measuring absorbance at 570 nm or fluorimetrically by exciting at 530 nm and detecting emission at 590 nm [33]. Non-fluorometric readouts can also be performed by using resazurin [34], [35], [36] or tetrazolium dyes [37], [38], [39]. These methods are also performed on M. tuberculosis as well as non-tuberculous mycobacteria (NMT) [40].

The resazurin microtiter assay (REMA) allows for the detection of microbial growth in a small volume of solution in microtiter plates. We can associate the use of a spectrophotometer (Biotrak II) to suppress the possible interference of color of natural products extracts with the resazurin color. Plates are read with a spectrophotometer at 620 nm. The 96-well microplates offer the advantage of using small volumes of reagents. Plates can be read visually without the need of instrumentation. The MIC is defined as the lowest concentration of extract that prevents a color change of resazurin (blue to pink). The plant extracts that could not prevent growth of M. ulcerans up to a concentration of 250 µg/mL are considered inactive.

For screening antibacterial activities of natural products, it is essential to use an in vitro antibacterial assay that is simple, rapid, sensitive, and cost-effective. Usually, small quantities of natural products are available for antibacterial screening, and this can be a limiting factor. Dilution method performed on LJ is time consuming, very slow and requires significant quantities of materials. When performed on 7H11, it requires a CO2 incubator because M. ulcerans is a microaerophilic bacterium. With the BACTEC 460 system, microaerobic conditions (2.5 to 5 % oxygen) are needed to promote the growth of M. ulcerans. Furthermore, the BACTEC 460 system requires significant, heavy equipment and is very expensive. We therefore decided to focus on the REMA test to screen plant extracts for antimycobacterial activity against M. ulcerans. The resazurin assay using a microtiter plate, described here, is modified to determine the MIC values of natural products against M. ulcerans. Resazurin sodium salt powder (Acros Organic N. V.) is prepared at 0.02 % (w/v) in distilled water, filter sterilized and stored at 4 °C for no more than 2 weeks. A total of 100 µL of M. ulcerans suspensions is added to each well of a microtiter plate together with the plant extracts in Middlebrook 7H9 broth to obtain a final volume of 200 µL in each well. It is necessary to include 3 positive control wells (containing 100 µL of Middlebrook 7H9 broth and 100 µL of a mycobacterial suspension each) and 3 negative control wells (containing 200 µL of Middlebrook 7H9 broth). After 15 days incubation, 30 µL of resazurin 0.02 % are added to the first positive control well. Dye color changing to pink indicates bacterial growth. The dye is then added to all remaining wells in the plate. The results are read 48 hours later. If no color change is observed until the 17th day (thus 2 days after the addition), results are considered inconclusive. The results are considered if, and only if, the negative control wells become blue by the addition of resazurin. We used this test to screen the activity of 44 plants used traditionally to treat BU in Bénin [11]. Results are given in [Table 1]. Out of the 44 plant extracts tested, two plants inhibited the growth of M. ulcerans at concentrations ≤ 250 µg/mL: Holarrhena floribunda (G. Don) T. Durand and Schinz and Jatropha curcas Linn showed inhibitory activity against M. ulcerans at concentrations of 125 and 250 µg/mL, respectively. Control experiments showed that 0.625 % dimethyl sulfoxide (DMSO, solvent used for extract dissolving) or less in each well did not have any inhibitory effect on the growth of M. ulcerans ATCC 19423.

In traditional medicine, practitioners use different plant combinations to treat BU, but in our study plants were investigated individually. This could explain the low number of plants found to be active against M. ulcerans. It is also probable that these plants are used to treat the symptoms of the disease rather than actually to kill the bacteria. Some plant species may not contain compounds which inhibit the growth of or kill M. ulcerans but may have anti-inflammatory, analgesic, anesthetic, antiseptic, anti-edema, or healing properties. Further investigations are now required to isolate active compounds and assess their in vitro and in vivo activities against M. ulcerans. The adapted REMA method is simple, sensitive, and rapid and could be a method of choice to successfully assess antibacterial properties of plant extracts against M. ulcerans at a relatively low cost. This is the first application of the REMA to screen plants extracts against M. ulcerans.

Additional methods not described in this review are bioautographic methods and a conductimetric assay detecting microbial growth as a change in the electrical conductivity or impedance of the growth medium [14]. But there are no references using these methods for M. ulcerans.

#

Test Validation

#

Reference compounds

It is evident that each test should contain at least one reference drug to ascertain test performance and proper interpretation of the screening results. Those listed here are commercially available and should be preferred: rifampicin, streptomycin, amikacin, moxifloxacin, and clarithromycin. The activity of these products has already been tested [17], [29]. In addition, each test should be replicated, preferably as independent repeats. A practical solution is to combine negative and positive controls (i.e., a strain susceptible and a strain resistant to the compound) in each assay.

#

Test organisms

A well-characterized strain, Mycobacterium ulcerans ATCC 19423 has a known drug susceptibility profile. It is used in many drug susceptibility tests. M. ulcerans is a microorganism that can cause severe disease in humans and constitutes a danger for the employees directly exposed. Personnel handling this microorganism must wear protective gloves and, most importantly, should work in biosafety cabinets class II.

#

Discussion and Conclusion

Natural products constitute an important source of new drugs, and antimycobacterial susceptibility testing methods are necessary to evaluate different extracts and find new active compounds. A number of methods are in current use, ranging from the classical disk diffusion and broth dilution assay to the radiorespirometric method (BACTEC 460). There are several factors that may affect the outcome of susceptibility tests. Reproducibility of laboratory results may be considerably influenced by the method used, and the procedures have to be standardized otherwise the results will vary widely under different test conditions [41]. Standard criteria and standardization of methods for evaluation of plant antimicrobial activity are lacking, and results can differ between authors. Sometimes it is difficult to compare results obtained with plant extracts with published results in the literature because several parameters influence the results, such as the choice of plant extracts, the choice of extraction method, and the choice of antimicrobial method [42]. It is also important to take into account that the evaporation of components could affect the antimicrobial activity and to avoid this, the assays should be carried out under sealed conditions to prevent loss by evaporation.

In general, dilution methods are appropriate for assaying polar and nonpolar extracts or compounds to determine MIC values [13].

We showed that REMA is a method of choice to compare MIC values in M. ulcerans. The use of microtiter plates has led to significant reductions in test compound quantities; furthermore, by using the oxidation/reduction indicator dyes, such as resazurin, the growth/inhibition can be read visually; and the reduced form of these dyes can also be quantitated colorimetrically, by measuring absorbance, or fluorimetrically and have high throughput possibilities. REMA is also able to detect partial inhibition, making it ideal for determining the relative activity of fractions using one or two concentrations.

This review has highlighted some methods which can be successfully used to investigate antimycobacterial activities of natural products against the microorganism responsible for BU, an important emerging disease. This could stimulate interest in research of active natural products against M. ulcerans. Phytomedicine is the first treatment used by the poor local population, and studies are required to investigate the possible efficacy of some natural products for the treatment of BU when the WHO recommended treatment cannot be applied immediately. Up to now, only one publication deals with the evaluation of the activity of natural products against M. ulcerans. The development of sensitive, rapid, and inexpensive assays allows researchers in low-income countries to become players in the utilization of their natural product resources. We hope that this review will help researchers to develop these tests.

#

Acknowledgements

Achille Yemoa is a doctoral student of the Wallonie Bruxelles International (WBI). His doctoral research was financially supported by the WBI and the BURULICO Project No. INCO-CT-2005-051476.

#

References

  • 1 Asiedu K, Scherpbier R, Raviglione M. Ulcère de Buruli: infection à Mycobacterium ulcerans. Belgium; OMS 2000
  • 2 Josse R, Guédénon A, Darie H, Anagonou S, Portaels F, Meyers W M. Les infections cutanées à Mycobacterium ulcerans: ulcères de Buruli.  Med Trop. 1995;  55 363-373
  • 3 Johnson P D, Veitch M G, Flood P E, Hayman J A. Mycobacterium ulcerans infection on Phillip Island, Victoria.  Med J Aust. 1995;  162 221-222
  • 4 Marston B J, Diallo M O, Horsburgh Jr C R, Diomande I, Saki M Z, Kanga J M, Patrice G, Lipman H B, Ostroff S M, Good R C. Emergence of Buruli ulcer disease in the Daloa region of Côte d'Ivoire.  Am J Trop Med Hyg. 1995;  52 219-224
  • 5 Chauty A, Ardant M F, Adeye A, Euverte H, Guédénon A, Johnson C, Aubry J, Nuermberger E, Grosset J. Promising clinical efficacy of streptomycin-rifampin combination for treatment of buruli ulcer (Mycobacterium ulcerans disease).  Antimicrob Agents Chemother. 2007;  51 4029-4035
  • 6 Nienhuis W A, Stienstra Y, Thompson W A, Awuah P C, Abass K M, Tuah W, Awua-Boateng N Y, Ampadu E O, Siegmund V, Schouten J P, Adjei O, Bretzel G, van der Werf T S. Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a randomized controlled trial.  Lancet. 2010;  37 664-672
  • 7 Johnson P D. Should antibiotics be given for Buruli ulcer?.  Lancet. 2010;  20 664-672
  • 8 Kibadi K, Boelaert M, Fraga A G, Kayinua M, Longatto-Filho A, Minuku J B, Mputu-Yamba J B, Muyembe-Tamfum J J, Pedrosa J, Roux J J, Meyers W M, Portaels F. Response to treatment in a prospective cohort of patients with large ulcerated lesions suspected to be Buruli ulcer (Mycobacterium ulcerans disease).  PloS Negl Trop Dis. 2010;  4 e736
  • 9 Johnson R C, Makoutode M, Hougnihin R, Guédénon A, Ifebe D, Boko M, Portaels F. Le traitement traditionnel de l'ulcère de Buruli au Bénin.  Med Trop. 2004;  64 145-150
  • 10 Guédénon A, Zinsou C, Josse R, Andélé K, Portaels F. Traditional treatment of Buruli ulcer in Benin.  Arch Dermatol. 1995;  131 741-742
  • 11 Yemoa A L, Gbenou J D, Johnson R C, Djego J G, Zinsou C, Moudachirou M, Quetin-Leclercq J, Bigot A, Portaels F. Identification et étude phytochimique de plantes utilisées dans le traitement traditionnel de l'ulcère de Buruli au Bénin.  Ethnopharmacologia. 2008;  42 50-57
  • 12 Kone M, Vangah-Mandah O M, Kouakou H, Yapo A P, Bleyere N M, Datte Y J, N'guessan B B, Joulia E D, D'Horpock A F, Ehile E E. Influence de Sacoglottis gabonensis (Baille) urban et de Okoubaka aubrevillei normand et pellegrin sur la croissance in vitro de Mycobacterium ulcerans.  Le pharmacien d'Afrique. 2007;  206 17-22
  • 13 Cos P, Vlietinck A J, Berghe D V, Maes L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept'.  J Ethnopharmacol. 2006;  106 290-302
  • 14 Sawai J, Doi R, Maekawa Y, Yoshikawa T, Kojima H. Indirect conductimetric assay of antibacterial activities.  J Indian Microbiol Biotechnol. 2002;  29 296-298
  • 15 Verkman A S. Drug discovery in academia.  Am J Physiol Cell Physiol. 2004;  286 465-474
  • 16 Gautam R, Saklani A, Jachak S M. Indian medicinal plants as a source of antimycobacterial agents.  J Ethnopharmacol. 2007;  110 200-234
  • 17 Portaels F, Traore H, de Ridder K, Meyers W M. In vitro susceptibility of Mycobacterium ulcerans to clarithromycin.  Antimicrob Agents Chemother. 1998;  42 2070-2073
  • 18 Bueno-Sánchez J G, Kouznetsov V V. Antimycobacterial susceptibility testing methods for natural products research.  Braz J Microbiol. 2010;  41 270-277
  • 19 Nostro A, Germano M P, D'Angelo V, Marino A, Cannatelli M A. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity.  Lett Microbiol. 2000;  30 379-384
  • 20 Silva M T, Simas S M, Batista T G, Cardarelli P, Tomassini T C. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae) fraction and physalin B bringing out the importance of assay determination.  Mem Inst Oswaldo Cruz. 2005;  100 779-782
  • 21 Barker L P, Lien B A, Brun O S, Schaak D D, McDonough K A, Chang L C. A Mycobacterium marinum zone of inhibition assay as a method for screening potential antimycobacterial compounds from marine extracts.  Planta Med. 2007;  73 559-563
  • 22 Connell N D, Nikaido H. Membrane permeability and transport in Mycobacterium tuberculosis. Bloom BR Tuberculosis: pathogenesis, protection and control. Washington; American Society of Microbiology 1994: 333-452
  • 23 Palomino J C, Obiang A M, Realini L, Meyers W M, Portaels F. Effect of oxygen on growth of Mycobacterium ulcerans in the BACTEC system.  J Clin Microbiol. 1998;  36 3420-3422
  • 24 Cantrell C L, Fischer N H, Urbatsch L, McGuire M S, Franzblau S G. Antimicrobial crude plant extracts from South, Central, and North America.  Phytomedicine. 1998;  5 137-145
  • 25 Rajab M S, Cantrell C L, Franzblau S G, Fischer N H. Antimycobacterial activity of (E)-phytol and derivatives: a preliminary structure activity study.  Planta Med. 1998;  64 2-4
  • 26 Sanders C A, Nieda R R, Desmond E P. Validation of the use of Middlebrook 7H10 agar, BACTEC MGIT 960, and BACTEC 460 12B media for testing the susceptibility of Mycobacterium tuberculosis to levofloxacin.  J Clin Microbiol. 2004;  42 5225-5228
  • 27 Diaz-Infantes M S, Ruiz-Serrano M J, Martinez-Sànchez L, Ortega A, Bouza E. Evaluation of the MB/BacT Mycobacterium detection system for susceptibility testing of Mycobacterium tuberculosis.  J Clin Microbiol. 2000;  38 1988-1989
  • 28 Ruiz P, Zerolo F J, Casal M J. Comparison of susceptibility testing of Mycobacterium tuberculosis using the ESP culture system II with that using the BACTEC method.  J Clin Microbiol. 2000;  38 4663-4664
  • 29 Ji B, Lefrançois S, Robert J, Chauffour A, Truffot C, Jarlier V. In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans.  Antimicrob Agents Chemother. 2006;  50 1921-1926
  • 30 Chand S, Lusunzi I, Veal D A, Williams L R, Karuso P. Rapid screening of the antimicrobial activity of extracts and natural products.  J Antibiot. 1994;  47 1295-1304
  • 31 Clarke J M, Gillings M R, Altavilla N, Beattie A J. Potential problems with fluorescein diacetate assays of cell viability when testing natural products for antimicrobial activity.  J Microbiol Methods. 2001;  46 261-267
  • 32 Franzblau S G, Witzig R S, McLaughlin J C, Torres P, Madico G, Hernandez A, Degnan M T, Cook M B, Quenzer V K, Ferguson R M, Gilman R H. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay.  J Clin Microbiol. 1998;  36 362-366
  • 33 Collins L, Franzblau S G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium.  Antimicrob Agents Chemother. 1997;  41 1004-1009
  • 34 Palomino J C, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis.  Antimicrob Agents Chemother. 2002;  46 2720-2722
  • 35 Martin A, Portaels F, Palomino J C. Colorimetric redox-indicator methods for the rapid detection of multidrug resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis.  J Antimicrob Chemother. 2007;  59 175-183
  • 36 Martin A, Camacho M, Portaels F, Palomino J C. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method.  Antimicrob Agents Chemother. 2003;  47 3616-3619
  • 37 Abate G, Mshana R N, Miorner H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis.  Int J Tuberc Lung Dis. 1998;  2 1011-1016
  • 38 Caviedes L, Delgado J, Gilman R H. Tetrazolium microplate assay as a rapid and inexpensive colorimetric method for determination of antibiotic susceptibility of Mycobacterium tuberculosis.  J Clin Microbiol. 2002;  40 1873-1874
  • 39 Foongladda S, Roengsanthia D, Arjrattanakool W, Chuchottaworn C, Chaiprasert A, Franzblau S G. Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis.  Int J Tuberc Lung Dis. 2002;  6 1118-1122
  • 40 Gordien A Y, Gray A I, Franzblau S G, Seidel V. Antimycobacterial terpenoids from Juniperus communis L. (Cuppressaceae).  J Ethnopharmacol. 2009;  126 500-505
  • 41 European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) . Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution.  Clin Microbiol Infect. 2003;  9 ix-xv
  • 42 Ncube N S, Afolayan A J, Okoh A I. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends.  Afr J Biotechnol. 2008;  7 1797-1806

Achille Yemoa

Unité de Formation et de Recherche en Pharmacie
Faculté des Sciences de Santé Université d'Abomey Calavi (UAC)

04 BP 494 Cotonou

Bénin

Telefon: +22 9 97 07 82 07

eMail: ayemoa@yahoo.fr

#

References

  • 1 Asiedu K, Scherpbier R, Raviglione M. Ulcère de Buruli: infection à Mycobacterium ulcerans. Belgium; OMS 2000
  • 2 Josse R, Guédénon A, Darie H, Anagonou S, Portaels F, Meyers W M. Les infections cutanées à Mycobacterium ulcerans: ulcères de Buruli.  Med Trop. 1995;  55 363-373
  • 3 Johnson P D, Veitch M G, Flood P E, Hayman J A. Mycobacterium ulcerans infection on Phillip Island, Victoria.  Med J Aust. 1995;  162 221-222
  • 4 Marston B J, Diallo M O, Horsburgh Jr C R, Diomande I, Saki M Z, Kanga J M, Patrice G, Lipman H B, Ostroff S M, Good R C. Emergence of Buruli ulcer disease in the Daloa region of Côte d'Ivoire.  Am J Trop Med Hyg. 1995;  52 219-224
  • 5 Chauty A, Ardant M F, Adeye A, Euverte H, Guédénon A, Johnson C, Aubry J, Nuermberger E, Grosset J. Promising clinical efficacy of streptomycin-rifampin combination for treatment of buruli ulcer (Mycobacterium ulcerans disease).  Antimicrob Agents Chemother. 2007;  51 4029-4035
  • 6 Nienhuis W A, Stienstra Y, Thompson W A, Awuah P C, Abass K M, Tuah W, Awua-Boateng N Y, Ampadu E O, Siegmund V, Schouten J P, Adjei O, Bretzel G, van der Werf T S. Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a randomized controlled trial.  Lancet. 2010;  37 664-672
  • 7 Johnson P D. Should antibiotics be given for Buruli ulcer?.  Lancet. 2010;  20 664-672
  • 8 Kibadi K, Boelaert M, Fraga A G, Kayinua M, Longatto-Filho A, Minuku J B, Mputu-Yamba J B, Muyembe-Tamfum J J, Pedrosa J, Roux J J, Meyers W M, Portaels F. Response to treatment in a prospective cohort of patients with large ulcerated lesions suspected to be Buruli ulcer (Mycobacterium ulcerans disease).  PloS Negl Trop Dis. 2010;  4 e736
  • 9 Johnson R C, Makoutode M, Hougnihin R, Guédénon A, Ifebe D, Boko M, Portaels F. Le traitement traditionnel de l'ulcère de Buruli au Bénin.  Med Trop. 2004;  64 145-150
  • 10 Guédénon A, Zinsou C, Josse R, Andélé K, Portaels F. Traditional treatment of Buruli ulcer in Benin.  Arch Dermatol. 1995;  131 741-742
  • 11 Yemoa A L, Gbenou J D, Johnson R C, Djego J G, Zinsou C, Moudachirou M, Quetin-Leclercq J, Bigot A, Portaels F. Identification et étude phytochimique de plantes utilisées dans le traitement traditionnel de l'ulcère de Buruli au Bénin.  Ethnopharmacologia. 2008;  42 50-57
  • 12 Kone M, Vangah-Mandah O M, Kouakou H, Yapo A P, Bleyere N M, Datte Y J, N'guessan B B, Joulia E D, D'Horpock A F, Ehile E E. Influence de Sacoglottis gabonensis (Baille) urban et de Okoubaka aubrevillei normand et pellegrin sur la croissance in vitro de Mycobacterium ulcerans.  Le pharmacien d'Afrique. 2007;  206 17-22
  • 13 Cos P, Vlietinck A J, Berghe D V, Maes L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept'.  J Ethnopharmacol. 2006;  106 290-302
  • 14 Sawai J, Doi R, Maekawa Y, Yoshikawa T, Kojima H. Indirect conductimetric assay of antibacterial activities.  J Indian Microbiol Biotechnol. 2002;  29 296-298
  • 15 Verkman A S. Drug discovery in academia.  Am J Physiol Cell Physiol. 2004;  286 465-474
  • 16 Gautam R, Saklani A, Jachak S M. Indian medicinal plants as a source of antimycobacterial agents.  J Ethnopharmacol. 2007;  110 200-234
  • 17 Portaels F, Traore H, de Ridder K, Meyers W M. In vitro susceptibility of Mycobacterium ulcerans to clarithromycin.  Antimicrob Agents Chemother. 1998;  42 2070-2073
  • 18 Bueno-Sánchez J G, Kouznetsov V V. Antimycobacterial susceptibility testing methods for natural products research.  Braz J Microbiol. 2010;  41 270-277
  • 19 Nostro A, Germano M P, D'Angelo V, Marino A, Cannatelli M A. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity.  Lett Microbiol. 2000;  30 379-384
  • 20 Silva M T, Simas S M, Batista T G, Cardarelli P, Tomassini T C. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae) fraction and physalin B bringing out the importance of assay determination.  Mem Inst Oswaldo Cruz. 2005;  100 779-782
  • 21 Barker L P, Lien B A, Brun O S, Schaak D D, McDonough K A, Chang L C. A Mycobacterium marinum zone of inhibition assay as a method for screening potential antimycobacterial compounds from marine extracts.  Planta Med. 2007;  73 559-563
  • 22 Connell N D, Nikaido H. Membrane permeability and transport in Mycobacterium tuberculosis. Bloom BR Tuberculosis: pathogenesis, protection and control. Washington; American Society of Microbiology 1994: 333-452
  • 23 Palomino J C, Obiang A M, Realini L, Meyers W M, Portaels F. Effect of oxygen on growth of Mycobacterium ulcerans in the BACTEC system.  J Clin Microbiol. 1998;  36 3420-3422
  • 24 Cantrell C L, Fischer N H, Urbatsch L, McGuire M S, Franzblau S G. Antimicrobial crude plant extracts from South, Central, and North America.  Phytomedicine. 1998;  5 137-145
  • 25 Rajab M S, Cantrell C L, Franzblau S G, Fischer N H. Antimycobacterial activity of (E)-phytol and derivatives: a preliminary structure activity study.  Planta Med. 1998;  64 2-4
  • 26 Sanders C A, Nieda R R, Desmond E P. Validation of the use of Middlebrook 7H10 agar, BACTEC MGIT 960, and BACTEC 460 12B media for testing the susceptibility of Mycobacterium tuberculosis to levofloxacin.  J Clin Microbiol. 2004;  42 5225-5228
  • 27 Diaz-Infantes M S, Ruiz-Serrano M J, Martinez-Sànchez L, Ortega A, Bouza E. Evaluation of the MB/BacT Mycobacterium detection system for susceptibility testing of Mycobacterium tuberculosis.  J Clin Microbiol. 2000;  38 1988-1989
  • 28 Ruiz P, Zerolo F J, Casal M J. Comparison of susceptibility testing of Mycobacterium tuberculosis using the ESP culture system II with that using the BACTEC method.  J Clin Microbiol. 2000;  38 4663-4664
  • 29 Ji B, Lefrançois S, Robert J, Chauffour A, Truffot C, Jarlier V. In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans.  Antimicrob Agents Chemother. 2006;  50 1921-1926
  • 30 Chand S, Lusunzi I, Veal D A, Williams L R, Karuso P. Rapid screening of the antimicrobial activity of extracts and natural products.  J Antibiot. 1994;  47 1295-1304
  • 31 Clarke J M, Gillings M R, Altavilla N, Beattie A J. Potential problems with fluorescein diacetate assays of cell viability when testing natural products for antimicrobial activity.  J Microbiol Methods. 2001;  46 261-267
  • 32 Franzblau S G, Witzig R S, McLaughlin J C, Torres P, Madico G, Hernandez A, Degnan M T, Cook M B, Quenzer V K, Ferguson R M, Gilman R H. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay.  J Clin Microbiol. 1998;  36 362-366
  • 33 Collins L, Franzblau S G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium.  Antimicrob Agents Chemother. 1997;  41 1004-1009
  • 34 Palomino J C, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis.  Antimicrob Agents Chemother. 2002;  46 2720-2722
  • 35 Martin A, Portaels F, Palomino J C. Colorimetric redox-indicator methods for the rapid detection of multidrug resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis.  J Antimicrob Chemother. 2007;  59 175-183
  • 36 Martin A, Camacho M, Portaels F, Palomino J C. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method.  Antimicrob Agents Chemother. 2003;  47 3616-3619
  • 37 Abate G, Mshana R N, Miorner H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis.  Int J Tuberc Lung Dis. 1998;  2 1011-1016
  • 38 Caviedes L, Delgado J, Gilman R H. Tetrazolium microplate assay as a rapid and inexpensive colorimetric method for determination of antibiotic susceptibility of Mycobacterium tuberculosis.  J Clin Microbiol. 2002;  40 1873-1874
  • 39 Foongladda S, Roengsanthia D, Arjrattanakool W, Chuchottaworn C, Chaiprasert A, Franzblau S G. Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis.  Int J Tuberc Lung Dis. 2002;  6 1118-1122
  • 40 Gordien A Y, Gray A I, Franzblau S G, Seidel V. Antimycobacterial terpenoids from Juniperus communis L. (Cuppressaceae).  J Ethnopharmacol. 2009;  126 500-505
  • 41 European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) . Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution.  Clin Microbiol Infect. 2003;  9 ix-xv
  • 42 Ncube N S, Afolayan A J, Okoh A I. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends.  Afr J Biotechnol. 2008;  7 1797-1806

Achille Yemoa

Unité de Formation et de Recherche en Pharmacie
Faculté des Sciences de Santé Université d'Abomey Calavi (UAC)

04 BP 494 Cotonou

Bénin

Telefon: +22 9 97 07 82 07

eMail: ayemoa@yahoo.fr