Synlett 2024; 35(09): 983-988
DOI: 10.1055/s-0042-1751527
cluster
Chemical Synthesis and Catalysis in Germany

Remote Enantioselective Epoxidation Reactions Catalyzed by Chiral Iron Porphyrin Complexes with a Hydrogen-Bonding Site

Hussayn Ahmed
a   Technische Universität München, School of Natural Sciences Department Chemie and Catalysis Research Center (CRC), 85747 Garching, Germany
,
Alexander Pöthig
a   Technische Universität München, School of Natural Sciences Department Chemie and Catalysis Research Center (CRC), 85747 Garching, Germany
,
Khai-Nghi Truong
b   Rigaku Europe SE, Hugenottenallee 167, 63263 Neu-Isenburg, Germany
,
Thorsten Bach
a   Technische Universität München, School of Natural Sciences Department Chemie and Catalysis Research Center (CRC), 85747 Garching, Germany
› Author Affiliations
Financial support by the Deutsche Forschungsgemeinschaft (Ba 1372/23) is gratefully acknowledged.


Abstract

Iron porphyrin complexes, which were linked via a para-phenylethynyl group to a chiral scaffold with a lactam binding site, were probed as catalysts in the enantioselective epoxidation of 4-(ω-alkenyl)-quinolones. It was found that the 3-butenyl group in the substrate accounts for the highest enantioselectivity (up to 44% ee) and the absolute configuration of an oxirane product was elucidated by electron diffraction. A two-point hydrogen bond of the substrate to the catalyst is likely responsible for enantioface differentiation at a remote position. The study shows chirality transfer to be possible via four nonstereogenic carbon atoms between the binding site of the substrate and its reactive C=C double bond.

Supporting Information

Primary Data



Publication History

Received: 27 September 2023

Accepted after revision: 30 October 2023

Article published online:
30 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Katsuki T, Sharpless KB. J. Am. Chem. Soc. 1980; 102: 5974
    • 1b Gao Y, Hanson RM, Klunder JM, Masamune H, Ko SY, Sharpless KB. J. Am. Chem. Soc. 1987; 109: 5765
    • 1c Finn MG, Sharpless KB. J. Am. Chem. Soc. 1991; 113: 113

      Reviews:
    • 2a Reek JN. H, de Bruin B, Pullen S, Mooibroek TJ, Kluwer AM, Caumes X. Chem. Rev. 2022; 122: 12308
    • 2b Fanourakis A, Docherty PJ, Chuentragool P, Phipps RJ. ACS Catal. 2020; 10: 10672
    • 2c Proctor RS. J, Colgan AC, Phipps RJ. Nat. Chem. 2020; 12: 990
    • 2d Kuninobu Y, Torigoe T. Org. Biomol. Chem. 2020; 18: 4126
    • 2e Vidal D, Olivo G, Costas M. Chem. Eur. J. 2018; 24: 5042
    • 2f Mote NR, Chikkali SH. Chem. Asian J. 2018; 13: 3623
    • 2g Milan M, Bietti M, Costas M. Chem. Commun. 2018; 54: 9559

      For seminal contributions by Breslow and co-workers on remote functionalization, see:
    • 3a Breslow R, Winnik MA. J. Am. Chem. Soc. 1969; 91: 3083
    • 3b Breslow R. Acc. Chem. Res. 1980; 13: 170
    • 3c Breslow R, Zhang X, Huang Y. J. Am. Chem. Soc. 1997; 119: 4535
  • 4 Fanourakis A, Hodson NJ, Lit AR, Phipps RJ. J. Am. Chem. Soc. 2023; 145: 7516
  • 5 Review: Burg F, Bach T. J. Org. Chem. 2019; 84: 8815

    • Recent studies:
    • 6a Burg F, Gicquel M, Breitenlechner S, Pöthig A, Bach T. Angew. Chem. Int. Ed. 2018; 57: 2953
    • 6b Annapureddy RR, Jandl C, Bach T. J. Am. Chem. Soc. 2020; 142: 7374
    • 6c Burg F, Breitenlechner S, Jandl C, Bach T. Chem. Sci. 2020; 11: 2121
    • 6d Burg F, Buchelt C, Kreienborg NM, Merten C, Bach T. Org. Lett. 2021; 23: 1829
    • 6e Annapureddy RR, Burg F, Gramüller J, Golub TP, Merten C, Huber SM, Bach T. Angew. Chem. Int. Ed. 2021; 60: 7920
  • 7 Zhong F, Bach T. Chem. Eur. J. 2014; 20: 13522
    • 8a Fackler P, Berthold C, Voss F, Bach T. J. Am. Chem. Soc. 2010; 132: 15911
    • 8b Fackler P, Huber SM, Bach T. J. Am. Chem. Soc. 2012; 134: 12869

      For early reports on the topic, see:
    • 9a Groves JT, Nemo TE, Myers RS. J. Am. Chem. Soc. 1979; 101: 1032
    • 9b Groves JT, Nemo TE. J. Am. Chem. Soc. 1983; 105: 5786
    • 9c Groves JT, Myers RS. J. Am. Chem. Soc. 1983; 105: 5791
    • 9d Mansuy D, Battioni P, Renaud JP, Guerin P. J. Chem. Soc., Chem. Commun. 1985; 155
    • 9e Collman JP, Kodadek T, Raybuck SA, Brauman JI, Papazian LM. J. Am. Chem. Soc. 1985; 107: 4343

      For reviews, see:
    • 10a Ahmad I, Shagufta Shagufta, Rehman S. Tetrahedron 2022; 104: 132604
    • 10b Barona-Castaño JC, Carmona-Vargas CC, Brocksom TJ, de Oliveira KT. Molecules 2016; 21: 310
    • 10c Rose E, Andrioletti B, Zrig S, Quelquejeu-Ethève M. Chem. Soc. Rev. 2005; 34: 573
  • 11 Rucareanu S, Mongin O, Schuwey A, Hoyler N, Gossauer A, Amrein W, Hediger HU. J. Org. Chem. 2001; 66: 4973
    • 12a Zaidi SH. H, Fico RM, Lindsey JS. Org. Process Res. Dev. 2006; 10: 118
    • 12b Dogutan DK, Bediako DK, Teets TS, Schwalbe M, Nocera DG. Org. Lett. 2010; 12: 1036
  • 13 Borbas KE, Mroz P, Hamblin MR, Lindsey JS. Bioconjugate Chem. 2006; 17: 638
  • 14 Rebelo SL. H, Silva AM. N, Medforth CJ, Freire C. Molecules 2016; 21: 481
  • 15 Stephenson NA, Bell AT. J. Mol. Catal. A: Chem. 2007; 275: 54
  • 16 Zwergel C, Czepukojc B, Evain-Bana E, Xu Z, Stazi G, Mori M, Patsilinakos A, Mai A, Botta B, Ragno R, Bagrel D, Kirsch G, Meiser P, Jacob C, Montenarh M, Valante S. Eur. J. Med. Chem. 2017; 134: 316
  • 17 Rit RK, Li H, Argent SP, Wheelhouse KM, Woodward S, Lam HW. Adv. Synth. Catal. 2023; 365: 1629
  • 18 Xu D, Kaiser F, Li H, Reich RM, Guo H, Kühn FE. Org. Biomol. Chem. 2019; 17: 49
  • 19 Representative Procedure for the Fe-Catalyzed Epoxidation The iron porphyrin catalyst (0.20 mol%) was dissolved in anhydrous CH2Cl2 (5 mL per 50 μmol substrate) and added to the substrate (1.00 equiv.) in a flame dried Schlenk tube. The solution was stirred for 10 min at 0 °C. PhIO (1.00 equiv.) was added to the reaction solution in one portion, and the resulting reaction suspension was stirred for 4 h at 0 °C. The reaction was stopped by removing the solvent in vacuo, and the crude material was purified by automated column chromatography (MeOH/CH2Cl2 0/100 → 3/97 or EtOAc/hexanes 5/95 → 75/25). Exemplarily, product 10b (3.3 mg, 15.3 μmol, 31%, 44% ee) was obtained from substrate 2b (10.0 mg, 0.05 mmol) and iron porphyrin 5 (114 μg, 0.10 μmol) after purification by automated column chromatography (MeOH/CH2Cl2 0/100 → 3/97) as an off-white solid. 1H NMR (500 MHz, DMSO-d 6, 298 K): δ = 11.65 (s, 1 H, NH), 7.77 (dd, 3 J = 8.2 Hz, 4 J = 1.2 Hz, 1 H, H-5), 7.49 (ddd, 3 J = 8.2 Hz, 3 J = 7.1 Hz, 4 J = 1.2 Hz, 1 H, H-7), 7.31 (dd, 3 J = 8.2 Hz, 4 J = 1.2 Hz, 1 H, H-8), 7.20 (ddd, 3 J = 8.2 Hz, 3 J = 7.1 Hz, 3 J = 1.2 Hz, 1 H, H-6), 6.39 (s, 1 H, H-3), 3.07–3.00 (m, 1 H, H-3′), 2.99–2.86 (m, 2 H, H-1′), 2.71 (dd, 2 J = 5.1 Hz, 3 J = 4.0 Hz, 1 H, H-4′), 2.53–2.51 (m, 1 H, H-4′), 1.94–1.83 (m, 1 H, H-2′), 1.82–1.71 (m, 1 H, H-2′) ppm. 13C NMR (126 MHz, DMSO-d 6, 298 K): δ = 162.1 (s, C=O), 151.3 (s, C-4), 139.4 (s, C-8a), 130.7 (d, C-7), 124.8 (d, C-5), 122.2 (d, C-6), 120.6 (d, C-3), 119.1 (s, C-7a), 116.2 (d, C-8), 51.6 (d, C-3′), 46.7 (t, C-4′), 31.8 (t, C-2′), 28.2 (t, C-1′). Chiral HPLC: 44% ee [©CHIRALPAK AD-H 250 × 4.6 mm, 20 °C, 10% i-PrOH/n-heptane, 1 mL/min, 210 nm, t R = 26.1 min (major), t R = 27.7 min (minor).
  • 20 Ito S, White FJ, Okunishi E, Aoyama Y, Yamano A, Sato H, Ferrara JD, Jasnowski M, Meyer M. CrystEngComm 2021; 23: 8622
    • 21a Truong K.-N, Ito S, Wojciechowski JM, Göb CR, Schürmann CJ, Yamano A, Del Campo M, Okunishi E, Aoyama Y, Mihira T, Hosogi N, Benet-Buchholz J, Escudero-Adán EC, White FJ, Ferrara JD, Bücker R. Symmetry 2023; 15: 1555
    • 21b Klar PB, Krysiak Y, Xu H, Steciuk G, Cho J, Zou X, Palatinus L. Nat. Chem. 2023; 15: 848