CC BY 4.0 · SynOpen 2023; 07(01): 76-87
DOI: 10.1055/s-0040-1720060
graphical review

Red-Shifting Blue Light Photoredox Catalysis for Organic Synthesis: A Graphical Review

a   Department of Chemistry, Columbia University, New York, New York, 10027, USA
,
Katherine A. Xie
a   Department of Chemistry, Columbia University, New York, New York, 10027, USA
,
Samantha L. Goldschmid
a   Department of Chemistry, Columbia University, New York, New York, 10027, USA
,
a   Department of Chemistry, Columbia University, New York, New York, 10027, USA
,
b   Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey, 08903, USA
,
c   Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, 08543, USA
,
b   Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey, 08903, USA
,
a   Department of Chemistry, Columbia University, New York, New York, 10027, USA
› Author Affiliations


Abstract

Photoredox catalysis has revolutionized synthetic chemistry in recent decades. However, the field has traditionally used high-energy blue/ultraviolet light to activate chromophores. High-energy irradiation is associated with several drawbacks (e.g., activation of sensitive functional groups, undesired metal-ligand homolysis, background activation of molecules, and poor penetration), which has led researchers to develop alternative systems with lower energy deep red (DR) or near-infrared (NIR) light. This graphical review provides a concise overview of photophysical principles relevant to photoredox catalysis. Several applications that benefit from low-energy irradiation, such as large-scale batch reactions, photodynamic therapy, biological labeling, and multi-photon excitation are reviewed.



Publication History

Received: 11 January 2023

Accepted: 24 January 2023

Article published online:
28 February 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Ravetz BD, Tay NE. S, Joe CL, Sezen-Edmonds M, Schmidt MA, Tan Y, Janey JM, Eastgate MD, Rovis T. ACS Cent. Sci. 2020; 6: 2053
    • 2b Li M, Gebremedhin KH, Ma D, Pu Z, Xiong T, Xu Y, Kim JS, Peng X. J. Am. Chem. Soc. 2022; 144: 163
    • 2c Cesana PT, Li BX, Shepard SG, Ting SI, Hart SM, Olson CM, Martinez Alvarado JI, Son M, Steiman TJ, Castellano FN, Doyle AG, MacMillan DW. C, Schlau-Cohen GS. Chem 2022; 8: 174
    • 2d Stull SM, Mei L, Gianetti TL. Synlett 2022; 33: 1194
    • 2e Mei L, Veleta JM, Gianetti TL. J. Am. Chem. Soc. 2020; 142: 12056
    • 2f Buksh BF, Knutson SD, Oakley JV, Bissonnette NB, Oblinsky DG, Schwoerer MP, Seath CP, Geri JB, Rodriguez-Rivera FP, Parker DL, Scholes GD, Ploss A, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 6154
    • 2g Anslyn EV, Dougherty DA. Modern Physical Organic Chemistry CA, 2006
    • 2h Blume M, Watson RE. Proc. R. Soc. London, Ser. A 1962; 270: 127
    • 2i Weinberg S. Lectures on Quantum Mechanics . Cambridge University Press; Cambridge: 2015
    • 2j Goldschmid SL, Bednarova E, Beck LR, Xie K, Tay NE. S, Ravetz BD, Li J, Joe CL, Rovis T. Synlett 2022; 33: 247
    • 2k Sellet N, Cormier M, Goddard J. Org. Chem. Front. 2021; 8: 6783
    • 3a Rybicka-Jasińska K, Wdowik T, Łuczak K, Wierzba AJ, Drapała O, Gryko D. ACS Org. Inorg. Au 2022; 2: 422
    • 3b Han G, Li G, Huang J, Han C, Turro C, Sun Y. Nat. Commun. 2022; 13: 2288
    • 3c Calogero F, Magagnano G, Potenti S, Pasca F, Fermi A, Gualandi A, Ceroni P, Bergamini G, Cozzi PG. Chem. Sci. 2022; 13: 5973
    • 3d Dadashi-Silab S, Kim K, Lorandi F, Szczepaniak G, Kramer S, Peteanu L, Matyjaszewski K. ACS Macro Lett. 2022; 11: 376
    • 3e Mei L, Moutet J, Stull SM, Gianetti TL. J. Org. Chem. 2021; 86: 10640
    • 3f Kosso AR. O, Sellet N, Baralle A, Cormier M, Goddard J.-P. Chem. Sci. 2021; 12: 6964
    • 3g Goldschmid SL, Tay NE. S, Joe CL, Lainhart BC, Sherwood TC, Simmons EM, Sezen-Edmonds M, Rovis T. J. Am. Chem. Soc. 2022; 144: 22409
    • 4a Sezen-Edmonds M, Tabora JE, Cohen BM, Zaretsky S, Simmons EM, Sherwood TC, Ramirez A. Org. Process Res. Dev. 2020; 24: 2128
    • 4b Corcoran EB, McMullen JP, Lévesque F, Wismer MK, Naber JR. Angew. Chem. Int. Ed. 2020; 59: 11964
    • 4c Pitre SP, McTiernan CD, Scaiano JC. Acc. Chem. Res. 2016; 49: 1320
    • 4d Ochola JR, Wolf MO. Org. Biomol. Chem. 2016; 14: 9088
    • 4e Loubière K, Oelgemöller M, Aillet T, Dechy-Cabaret O, Prat L. Chem. Eng. Process. 2016; 104: 120
    • 4f Bonfield HE, Knauber T, Lévesque F, Moschetta EG, Susanne F, Edwards LJ. Nat. Commun. 2020; 11: 804
    • 5a Karges J, Heinemann F, Jakubaszek M, Maschietto F, Subecz C, Dotou M, Vinck R, Blacque O, Tharaud M, Goud B, Viñuelas Zahínos E, Spingler B, Ciofini I, Gasser G. J. Am. Chem. Soc. 2020; 142: 6578
    • 5b Roque JA. III, Barrett PC, Cole HD, Lifshits LM, Shi G, Monro S, von Dohlen D, Kim S, Russo N, Deep G, Cameron CG, Alberto ME, McFarland SA. Chem. Sci. 2020; 11: 9784
    • 5c McKenzie LK, Sazanovich IV, Baggaley E, Bonneau M, Guerchais V, Williams JA, Weinstein JA, Bryant HE. Chem. Eur. J. 2017; 23: 234
    • 5d Dąbrowski JM, Pucelik B, Regiel-Futyra A, Brindell M, Mazuryk O, Kyzioł A, Stochel G, Macyk W, Arnaut LG. Coord. Chem. Rev. 2016; 325: 67
    • 5e Dolmans DE. J. G. J, Fukumura D, Jain RK. Nat. Rev. Cancer 2003; 3: 380
    • 5f Heinemann F, Karges J, Gasser G. Acc. Chem. Res. 2017; 50: 2727
    • 5g Monro S, Colón KL, Yin H, Roque JI, Konda P, Gujar S, Thummel RP, Lilge L, Cameron CG, McFarland SA. Chem. Rev. 2019; 119: 797
    • 5h Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. Chem. Soc. Rev. 2017; 46: 7706
    • 5i Shum J, Leung PK.-K, Lo KK.-W. Inorg. Chem. 2019; 58: 2231
    • 5j Huang H, Banerjee S, Qiu K, Zhang P, Blacque O, Malcomson T, Paterson MJ, Clarkson GJ, Staniforth M, Stavros VG, Gasser G, Chao H, Sadler PJ. Nat. Chem. 2019; 11: 1041
    • 5k Alabugin A. Photochem. Photobiol. 2019; 95: 722
    • 5l Li M, Xia J, Tian R, Wang J, Fan J, Du J, Long S, Song X, Foley JW, Peng X. J. Am. Chem. Soc. 2018; 140: 14851
    • 5m Huang L, Li Z, Zhao Y, Zhang Y, Wu S, Zhao J, Han G. J. Am. Chem. Soc. 2016; 138: 14586
    • 6a Li H, Yang Y, He C, Zeng L, Duan C. ACS Catal. 2019; 9: 422
    • 6b Contreras-Martel C, Martinez-Oyanedel J, Bunster M, Legrand P, Piras C, Vernede X, Fontecilla-Camps J.-C. Acta Crystallogr. D 2001; 57: 52 Worldwide Protein Data Bank deposition DOI: 10.2210/pdb1eyx/pdb
    • 6c Glaser F, Kerzig C, Wenger OS. Angew. Chem. Int. Ed. 2020; 59: 10266
    • 6d Marchini M, Gualandi A, Mengozzi L, Franchi P, Lucarini M, Cozzi PG, Balzani V, Ceroni P. Phys. Chem. Chem. Phys. 2018; 20: 8071
    • 6e Glaser F, Wenger OS. JACS Au 2022; 2: 1488
    • 6f Kuang S, Wei F, Karges J, Ke L, Xiong K, Liao X, Gasser G, Ji L, Chao H. J. Am. Chem. Soc. 2022; 144: 4091
    • 6g Li P, Deetz AM, Hu J, Meyer GJ, Hu K. J. Am. Chem. Soc. 2022; 144: 17604
    • 6h Yu J, Cui Y, Xu H, Yang Y, Wang Z, Chen B, Qian G. Nat. Commun. 2013; 4: 2719
    • 6i Ghosh I, Ghosh T, Bardagi JI, König B. Science 2014; 346: 725
    • 6j Khurana M, Collins HA, Karotki A, Anderson HL, Cramb DT, Wilson BC. Photochem. Photobiol. 2007; 83: 1441
    • 6k Castellano FN, Malak H, Gryczynski I, Lakowicz JR. Inorg. Chem. 1997; 36: 5548
    • 6l Wang P, Tian L, Gao X, Xu Y, Yang P. ChemCatChem 2020; 12: 4185
    • 6m Romero Ávila M, León-Rojas AF, Lacroix PG, Malfant I, Farfán N, Mhanna R, Santillan R, Ramos-Ortiz G, Malval J.-P. J. Phys. Chem. Lett. 2020; 11: 6487
    • 7a Tay NE. S, Ryu KA, Weber JL, Olow AK, Cabanero DC, Reichman DR, Oslund RC, Fadeyi OO, Rovis T. Nat. Chem. 2023; 15: 101
    • 7b Jemas A, Xie Y, Pigga JE, Caplan JL, am Ende CW, Fox JM. J. Am. Chem. Soc. 2022; 144: 1647
    • 7c Wang C, Zhang H, Zhang T, Zou X, Wang H, Rosenberger JE, Vannam R, Trout WS, Grimm JB, Lavis LD, Thorpe C, Jia X, Li Z, Fox JM. J. Am. Chem. Soc. 2021; 143: 10793
    • 7d Dai S.-Y, Yang D. J. Am. Chem. Soc. 2020; 142: 17156
    • 7e Nguyen V.-N, Yim Y, Kim S, Ryu B, Swamy KM. K, Kim G, Kwon N, Kim C.-Y, Park S, Yoon J. Angew. Chem. Int. Ed. 2020; 59: 8957
    • 8a Ravetz BD, Pun AB, Churchill EM, Congreve DN, Rovis T, Campos LM. Nature 2019; 565: 343
    • 8b Glaser F, Kerzig C, Wenger OS. Chem. Sci. 2021; 12: 9922
    • 8c Haruki R, Sasaki Y, Masutani K, Yanai N, Kimizuka N. Chem. Commun. 2020; 56: 7017
    • 8d Glaser F, Wenger OS. Chem. Sci. 2023; 14: 149
    • 8e Zähringer TJ. B, Bertrams M.-S, Kerzig C. J. Mater. Chem. C 2022; 10: 4568
    • 8f Uji M, Harada N, Kimizuka N, Saigo M, Miyata K, Onda K, Yanai N. J. Mater. Chem. C 2022; 10: 4558
    • 8g Lee C, Xu EZ, Liu Y, Teitelboim A, Yao K, Fernandez-Bravo A, Kotulska AM, Nam SH, Suh YD, Bednarkiewicz A, Cohen BE, Chan EM, Schuck PJ. Nature 2021; 589: 230
    • 8h Bharmoria P, Bildirir H, Moth-Poulsen K. Chem. Soc. Rev. 2020; 49: 6529
    • 8i Zhou Y, Castellano FN, Schmidt TW, Hanson K. ACS Energy Lett. 2020; 5: 2322
    • 8j Zeng L, Huang L, Han J, Han G. Acc. Chem. Res. 2022; 55: 2604
    • 8k Manna MK, Shokri S, Wiederrecht GP, Gosztola DJ, Ayitou AJ.-L. Chem. Commun. 2018; 54: 5809
    • 8l Ahmad W, Wang J, Li H, Ouyang Q, Wu W, Chen Q. Coord. Chem. Rev. 2021; 439: 213944
    • 8m Seo SE, Choe H.-S, Cho H, Kim H, Kim J.-H, Kwon OS. J. Mater. Chem. C 2022; 10: 4483
    • 8n Huang L, Kakadiaris E, Vaneckova T, Huang K, Vaculovicova M, Han G. Biomaterials 2019; 201: 77