CC BY-ND-NC 4.0 · SynOpen 2019; 03(04): 103-107
DOI: 10.1055/s-0039-1690331
letter
Copyright with the author(s) (2019) The author(s)

Synthesis of (Z)-Cinnamate Derivatives via Visible-Light-Driven E-to-Z Isomerization

Penghua Shu
,
Haichang Xu
,
Lingxiang Zhang
,
Junping Li
,
Hao Liu
,
Yuehui Luo
,
Xue Yang
,
Zhiyu Ju
,
Zhihong Xu
This work was financially supported by the National Natural Science Foundation of China (No. 21702178), the Key Scientific Research Project of Colleges and Universities in Henan Province (No. 18A350010), the Science and Technology Department of Henan Province (No. 182102311108), and the Excellent Young Key Teacher Funding Project of Xuchang University (No. 2017).
Further Information

Publication History

Received: 22 August 2019

Accepted after revision: 12 September 2019

Publication Date:
09 October 2019 (online)


Abstract

(Z)-Cinnamate derivatives are prevalent in natural bioactive products and in organic synthesis. Herein, we report a practical approach toward the efficient synthesis of (Z)-cinnamate derivatives via visible-light-driven isomerization. When E-isomers of cinnamate derivatives were irradiated with blue light in the presence of 1 mol% Ir2(ppy)4Cl2 (ppy = 2-phenylpyridine), Z-isomers were readily obtained in good yields. This strategy allows the large-scale synthesis of (Z)-cinnamate derivatives with simple purification. This convenient, mild, and green synthetic methodology was subsequently applied to the synthesis of coumarins.

Supporting Information

 
  • References and Notes

    • 1a Ibrahim AM, Mansoor AA, Gross A, Ashfaq MK, Jacob M, Khan SI, Hamann MT. J. Nat. Prod. 2009; 72: 2141
    • 1b Li T, Kongstad KT, Staerk D. J. Nat. Prod. 2019; 82: 249
    • 1c Shuab R, Lone R, Koul KK. Acta Physiol. Plant. 2016; 38: 64
    • 2a Fukuda H, Nishikawa K, Fukunaga Y, Okuda K, Kodama K, Matsumoto K, Kano A, Shindo M. Tetrahedron 2016; 72: 6492
    • 2b Shing TK. M, Luk T, Lee CM. Tetrahedron 2006; 62: 6621
  • 3 Siau WY, Zhang Y, Zhao Y. Top. Curr. Chem. 2012; 327: 33

    • For representative reports, see:
    • 4a Kuwahara Y, Kango H, Yamashita H. ACS Catal. 2019; 9: 1993
    • 4b Iwasaki R, Tanaka E, Ichihashi T, Idemoto Y, Endo K. J. Org. Chem. 2018; 83: 13574
    • 4c Prabusankar G, Sathyanarayana A, Raju G, Nagababu C. Asian J. Org. Chem. 2017; 6: 1451
    • 4d Surmiak SK, Doerenkamp C, Selter P, Peterlechner M, Schaefer AH, Eckert H, Studer A. Chem. Eur. J. 2017; 23: 6019
    • 4e Maesing F, Nuesse H, Klingauf J, Studer A. Org. Lett. 2017; 19: 2658
    • 4f Maesing F, Wang X, Nuesse H, Klingauf J, Studer A. Chem. Eur. J. 2017; 23: 6014
    • 4g Du W, Gu Q, Li Y, Lin Z, Yang D. Org. lett. 2017; 19: 316
    • 4h Jagtap SA, Sasaki T, Bhanage BM. J. Mol. Catal. A: Chem. 2016; 414: 78
    • 4i Slack ED, Gabriel CM, Lipshutz BH. Angew. Chem. Int. Ed. 2014; 53: 14051
  • 5 Jagtap SA, Bhanage BM. Mol. Catal. 2018; 460: 1

    • For representative reports, see:
    • 6a Wissing M, Niehues M, Ravoo BJ, Studer A. Eur. J. Org. Chem. 2018; 3403
    • 6b Li S.-S, Tao L, Wang F.-Z.-R, Liu Y.-M, Cao Y. Adv. Synth. Catal. 2016; 358: 1410
    • 6c Liang S, Hammond GB, Xu B. Chem. Commun. 2016; 52: 6013
    • 6d Mitsudome T, Yamamoto M, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K. J. Am. Chem. Soc. 2015; 137: 13452
    • 6e Vasilikogiannaki E, Titilas I, Vassilikogiannakis G, Stratakis M. Chem. Commun. 2015; 51: 2384
    • 7a Jagtap SA, Bhanage BM. ChemistrySelect 2018; 3: 713
    • 7b Kiryutin AS, Yurkovskaya AV, Lukzen NN, Vieth H.-M, Ivanov KL. J. Chem. Phys. 2015; 143: 234203-1
  • 8 Fedorov A, Liu H.-J, Lo H.-K, Coperet C. J. Am. Chem. Soc. 2016; 138: 16502
  • 9 Richmond E, Moran J. J. Org. Chem. 2015; 80: 6922

    • For representative reports, see:
    • 10a Kumar P, Dey R, Banerjee P. Org. Lett. 2018; 20: 5163
    • 10b Dey R, Kumar P, Banerjee P. J. Org. Chem. 2018; 83: 5438
    • 10c Weissenborn MJ, Loew SA, Borlinghaus N, Kuhn M, Kummer S, Rami F, Plietker B, Hauer B. ChemCatChem 2016; 8: 1636
    • 10d Abascal NC, Lichtor PA, Giuliano MW, Miller SJ. Chem. Sci. 2014; 5: 4504
    • 10e Zhang B, Lv C, Li W, Cui Z, Chen D, Cao F, Miao F, Zhou L. Chem. Pharm. Bull. 2015; 63: 255
    • 11a Cheung CW, Zhurkin FE, Hu X. J. Am. Chem. Soc. 2015; 137: 4932
    • 11b Lee H, Mane MV, Ryu H, Sahu D, Baik MH, Yi CS. J. Am. Chem. Soc. 2018; 140: 10289
    • 12a Ahmed TS, Grubbs RH. Angew. Chem. Int. Ed. 2017; 56: 11213
    • 12b Montgomery TP, Johns AM, Grubbs RH. Catalysts 2017; 7: 87
    • 12c Herbert MB, Grubbs RH. Angew. Chem. Int. Ed. 2015; 54: 5018
    • 12d Mann TJ, Speed AW, Schrock RR, Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 8395
  • 13 Hoffmann N. Chem. Rev. 2008; 108: 1052
  • 14 Ciszewski LW, Rybicka-Jasinska K, Gryko D. Org. Biomol. Chem. 2019; 17: 432

    • For reviews, see:
    • 15a Kaur N. J. Heterocycl. Chem. 2019; 56: 1141
    • 15b Kaur N. Synth. Commun. 2018; 48: 1259
    • 15c Kaur N. Curr. Org. Synth. 2018; 15: 298
    • 15d Kaur N. Curr. Org. Synth. 2017; 14: 972
  • 16 Hoffmann N. J. Photochem. Photobiol., C 2014; 19: 1
    • 17a Bach T, Hehn JP. Angew. Chem. Int. Ed. 2011; 50: 1000
    • 17b Ando Y. Yuki Gosei Kagaku Kyokaishi 2010; 68: 1067
    • 17c Weaver JD, Singh K, Staig S. J. Am. Chem. Soc. 2014; 136: 5275
    • 17d Fabry DC, Ronge MA, Rueping M. Chem. Eur. J. 2015; 21: 5350
    • 18a Bhadra M, Kandambeth S, Sahoo MK, Addicoat M, Balaraman E, Banerjee R. J. Am. Chem. Soc. 2019; 141: 6152
    • 18b Zhan K, Li Y. Catalysts 2017; 7: 337
    • 18c Metternich JB, Gilmour R. Synlett 2016; 27: 2541
    • 19a Lei T, Zhou C, Huang M.-Y, Zhao L.-M, Yang B, Ye C, Xiao H, Meng Q.-Y, Ramamurthy V, Tung C.-H, Wu L.-Z. Angew. Chem. Int. Ed. 2017; 56: 15407
    • 19b Pagire SK, Hossain A, Traub L, Kerres S, Reiser O. Chem. Commun. 2017; 53: 12072
  • 20 Typical Synthetic Procedure: A solution of 1a (0.4 mmol) and Ir2(ppy)4Cl2 (1 mol%) in CH3CN (4.0 mL) was irradiated at room temperature with 5 W blue LED for 24 h. The solvent was then removed under reduced pressure and the residue was purified by flash chromatography on silica gel to afford 2a (71%) as a white solid; mp 85–86.5 °C; Rf = 0.50 (petroleum/EtOAc, 1:2). 1H NMR (400 MHz, CD3OD): δ = 7.53 (d, J = 7.2 Hz, 2 H), 7.34–7.26 (m, 3 H), 6.75 (d, J = 12.8 Hz, 1 H), 6.02 (d, J = 12.8 Hz, 1 H). 13C NMR (100 MHz, CD3OD): δ = 172.7, 138.3, 136.8, 130.4, 129.7, 129.4, 124.3.
  • 22 Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 23a Srikrishna D, Dubey PK, Godugu C. Mini-Rev. Med. Chem. 2018; 18: 113
    • 23b Pereira TM, Franco DP, Vitorio F, Kummerle AE. Curr. Trends Med. Chem. 2018; 18: 124

      For representative reports, see:
    • 24a Metternich JB, Gilmour R. J. Am. Chem. Soc. 2016; 138: 1040
    • 24b Salem MA, Helal MH, Gouda MA, Ammar YA, El-Gaby MS. A, Abbas SY. Synth. Commun. 2018; 48: 1534
    • 24c Moskvina VS, Khilya VP. Chem. Heterocycl. Compd. 2019; 55: 300
  • 25 Typical Synthetic Procedure: A solution of 1u (0.4 mmol) and Ir2(ppy)4Cl2 (1 mol%) in CH3CN (4 mL) was irradiated at room temperature with a 5 W blue LED light for 72 h. The solvent was then removed under reduced pressure and the residue was purified by flash chromatography on silica gel to afford 2u (94%) as a white solid; mp 70–71.4 °C; Rf = 0.35 (petroleum–EtOAc, 3:1). 1H NMR (400 MHz, CDCl3): δ = 7.65 (d, J = 9.6 Hz, 1 H), 7.48 (m, 1 H), 7.42 (d, J = 7.6 Hz, 1 H), 7.27 (d, J = 8.4 Hz, 1 H), 7.21 (d, J = 7.2 Hz, 1 H), 6.39 (d, J = 9.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 161.0, 154.3, 143.6, 132.0, 128.1, 124.6, 119.0, 117.1, 116.9.