Synthesis 2012; 44(17): 2682-2694
DOI: 10.1055/s-0032-1316758
feature article
© Georg Thieme Verlag Stuttgart · New York

Conformationally Restricted Peptide Mimetics by Ring-Closing Olefin Metathesis

Satish Wakchaure
Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany, Fax: +49(9131)8522585   Email: peter.gmeiner@medchem.uni-erlangen.de
,
Jürgen Einsiedel
Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany, Fax: +49(9131)8522585   Email: peter.gmeiner@medchem.uni-erlangen.de
,
Reiner Waibel
Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany, Fax: +49(9131)8522585   Email: peter.gmeiner@medchem.uni-erlangen.de
,
Peter Gmeiner*
Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany, Fax: +49(9131)8522585   Email: peter.gmeiner@medchem.uni-erlangen.de
› Author Affiliations
Further Information

Publication History

Received: 25 May 2012

Accepted after revision: 27 June 2012

Publication Date:
06 August 2012 (online)


Abstract

Elegant chemical methodology restricting the backbone flexibility of biologically active peptides has attracted growing interest. A practical synthetic strategy is presented to access ten-membered lactam peptide mimetics. Employing a ring-closing olefin metathesis as the key reaction step, the cyclic olefin moiety was obtained with cis configuration. Conformational investigations were performed with two model peptides.

Supporting Information

 
  • References

    • 1a Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Drug Discovery Today 2010; 15: 40
    • 1b Sato AK, Viswanathan M, Kent RB, Wood CR. Curr. Opin. Biotechnol. 2006; 17: 638
  • 2 Bray BL. Nat. Rev. Drug Discovery 2003; 2: 587
  • 3 Hruby VJ. Drug Discovery Today 1997; 2: 165 ; and references cited therein
  • 4 See, for example: Giannis A, Kolter T. Angew. Chem. Int. Ed. 1993; 32: 1244

    • See, for example:
    • 5a Kahn M, Chen B. Tetrahedron Lett. 1987; 28: 1623
    • 5b Hinds MG, Welsh JH, Brennand DM, Fisher J, Glennie MJ, Richards NG. J, Turner DL, Robinson JA. J. Med. Chem. 1991; 34: 1777
    • 5c Hanessian S, McNaughton-Smith G, Lombart H.-G, Lubell WD. Tetrahedron 1997; 53: 12789
    • 5d Souers AJ, Virgilio AA, Rosenquist A, Fenuik W, Ellman JA. J. Am. Chem. Soc. 1999; 121: 1817
    • 5e Freidinger RM. J. Med. Chem. 2003; 46: 5553
    • 5f Stepien A, Loska R, Cmoch P, Stalinsky K. Synlett 2005; 83
    • 5g Wang W, Xiong C, Hruby VJ. Tetrahedron Lett. 2001; 42: 3159
    • 5h Pawar VG, De Borggraeve WM, Maes V, Tourwé DA, Compernolle F, Hoornaert GJ. Tetrahedron Lett. 2005; 46: 1707
    • 5i Albericio F, Arvidson PI, Bisetty K, Giralt E, Govender T, Jali S, Kongsaeree P, Kruger HG, Prabpai S. Chem. Biol. Drug Des. 2008; 71: 125
    • 5j Ko E, Burgess K. Org. Lett. 2011; 13: 980
  • 6 Grubbs RH, Chang S. Tetrahedron 1998; 54: 4413
  • 7 De Vega MJ. P, García-Aranda MI, González-Muniz R. Med. Res. Rev. 2011; 31: 677
  • 8 Di Cianni A, Carotenuto A, Brancaccio D, Novellino E, Reubi JC, Beetschen K, Papini AM, Ginanneschi M. J. Med. Chem. 2010; 53: 6188
  • 9 Grubbs RH, Blackwell HE. Angew. Chem. Int. Ed. 1998; 37: 3281
    • 10a Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL. J. Am. Chem. Soc. 2007; 129: 2456
    • 10b Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE. Nature (London) 2009; 462: 182
  • 11 Chapman RN, Dimartino G, Arora PS. J. Am. Chem. Soc. 2004; 126: 12252
  • 12 Miller SJ, Blackwell HE, Grubbs RH. J. Am. Chem. Soc. 1996; 118: 9606
  • 13 Reichwein JF, Liskamp RM. J. Eur. J. Org. Chem. 2000; 2335
  • 14 Freidinger RM. J. Org. Chem. 1985; 50: 3631
  • 15 Piscopio AD, Miller JF, Koch K. Tetrahedron 1999; 55: 8189
  • 16 Hoffmann T, Waibel R, Gmeiner P. J. Org. Chem. 2003; 68: 62
  • 17 Hoffmann T, Gmeiner P. Synlett 2002; 1014
  • 18 Einsiedel J, Lanig H, Waibel R, Gmeiner P. J. Org. Chem. 2007; 72: 9102
  • 19 Bittermann H, Boeckler F, Einsiedel J, Gmeiner P. Chem.–Eur. J. 2006; 12: 6315
  • 20 Beal LM, Liu B, Chu W, Moeller KD. Tetrahedron 2000; 56: 10113
    • 21a Grossmith CE, Senia F, Wagner J. Synlett 1999; 1660
    • 21b Zaminer J, Brockmann C, Huy P, Opitz R, Reuter C, Beyermann M, Freund C, Mueller M, Oschkinat H, Kuehne R, Schmalz H.-G. Angew. Chem. Int. Ed. 2010; 49: 7111
  • 22 Hoffmann T, Waibel R, Gmeiner P. Angew. Chem. Int. Ed. 2001; 40: 3661
  • 23 Banfi L, Basso A, Guanti G, Riva R. Tetrahedron Lett. 2003; 44: 7655
  • 24 Kaul R, Surprenant S, Lubell WD. J. Org. Chem. 2005; 70: 3838 ; corrigendum: J. Org. Chem. 2005, 70, 4901
  • 25 Fink BE, Kym PR, Katzenellenbogen JA. J. Am. Chem. Soc. 1998; 120: 4334
  • 26 Pinsker A, Einsiedel J, Haerterich S, Waibel R, Gmeiner P. Org. Lett. 2011; 13: 3502
  • 27 Anderson GW, Zimmerman JE, Callahan FM. J. Am. Chem. Soc. 1967; 89: 5012
  • 28 Compound 3a is described in: Senokuchi K, Nakai H, Nakayama Y, Odagaki Y, Sakaki K, Kato M, Maruyama T, Miyazaki T, Ito H, Kamiyasu K, Kim S.-i, Kawamura M, Hamanaka N. J. Med. Chem. 1995; 38: 2521 ; however a protocol for the preparation is not given. We obtained 3a when following the procedure for the synthesis of N-allylglycine ethyl ester described in ref. 13 starting from tert-butyl bromoacetate and allylamine
  • 29 Maynard HD, Grubbs RH. Tetrahedron Lett. 1999; 40: 4137
  • 30 Henchey LK, Porter JR, Ghosh I, Arora PS. ChemBioChem 2010; 11: 2104
  • 31 El-Faham A, Albericio F. J. Pept. Sci. 2010; 16: 6
  • 32 Compound 3c is described in ref. 11, however, we preferred the synthesis via direct allylation of alanine tert-butyl ester with allyl bromide