Synthesis 2012(6): 885-894  
DOI: 10.1055/s-0031-1289716
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Chemistry of Halonitroethenes, Part 2: Trichloronitroethene as a Building Block for the Novel Synthesis of 5-Chloro(nitro)methyl-Substituted 1-Aryltetrazoles

Viktor A. Zapol’skiia, Xuena Yanga, Jan C. Namysloa, Mimoza Gjikajb, Dieter E. Kaufmann*a
a Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstraße 6, 38678 Clausthal-Zellerfeld, Germany
Fax: +49(5323)722834; e-Mail: dieter.kaufmann@tu-clausthal.de;
b Institute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Straße 4, 38678 Clausthal-Zellerfeld, Germany
Further Information

Publication History

Received 24 November 2011
Publication Date:
17 February 2012 (online)

Abstract

Conversion of 1,1,2-trichloro-2-nitroethene with an excess of 1H-benzotriazole, followed by transamination of the resulting 1,1-bis(benzotriazol-1-yl)-2-chloro-2-nitroethene with different aniline derivatives provides the corresponding 1-(arylimino)-1-(benzotriazolyl)ethanes. Upon cycloaddition with sodium azide, these amidines enable the formation of hitherto unknown 1-aryltetrazoles bearing a chloro(nitro)methyl group in the 5-position. The structure of a 4-fluorophenyl derivative was proven by single-crystal X-ray diffraction analysis. Starting from arenediamines, this reaction affords bistetrazoles. In addition, the tetrazoles are interesting starting materials for further conversions of the side chain.

    References

  • 1a Kaberdin RV. Potkin VI. Zapol’skii VA. Russ. Chem. Rev.  1997,  66:  827 
  • 1b Potkin VI. Zapol’skii VA. Knizhnikov VA. Kaberdin RV. Yanuchok AA. Petkevich SK. Russ. J. Org. Chem.  2001,  37:  689 
  • 2a Zapol’skii VA. Namyslo JC. Adam AEW. Kaufmann DE. Heterocycles  2004,  1281 
  • 2b Zapol’skii VA. Namyslo JC. Blaschkowski B. Kaufmann DE. Synlett  2006,  3464 
  • 2c Zapol’skii VA. Namyslo JC. Gjikaj M. Kaufmann DE. ARKIVOC  2007,  (i):  76 
  • 2d Zapol’skii VA. Namyslo JC. Gjikaj M. Kaufmann DE. Synlett  2007,  1507 
  • 2e Zapol’skii VA. Namyslo JC. Altug C. Gjikaj M. Kaufmann DE. Synthesis  2008,  304 
  • 2f Meyer C. Zapol’skii VA. Adam AEW. Kaufmann DE. Synthesis  2008,  2575 
  • 2g Nutz E. Zapol’skii VA. Kaufmann DE. Synthesis  2009,  2719 
  • 2h Zapol’skii VA. Fischer R. Namyslo JC. Kaufmann DE. Bioorg. Med. Chem.  2009,  17:  4206 
  • 2i Zapol’skii VA. Namyslo JC. Gjikaj M. Kaufmann DE. Z. Naturforsch.  2010,  843 
  • 3 Scribner RM. J. Org. Chem.  1965,  30:  3657 
  • 4a Katritzky AR. Belyakov SA. Aldrichimica Acta  1998,  35 
  • 4b Katritzky AR. Lan X. Yang JZ. Denisko OV. Chem. Rev.  1998,  98:  409 
  • 4c Katritzky AR. Abdel-Fattah AAA. Gromova AV. Witek R. Steel PJ. J. Org. Chem.  2005,  70:  9211 
  • 4d Katritzky AR. Cai C. Suzuki K. Singh SK. J. Org. Chem.  2004,  69:  811 
  • 5 Clark NG. Hams AF. Leggetter BE. Nature  1963,  200:  171 
  • 6a Alvarez SG. Alvarez MT. Synthesis  1997,  413 
  • 6b Gunn SJ. Baker A. Bertram RD. Warriner SL. Synlett  2007,  2643 
  • 8 Sheldrick GM. SHELXS 97 and SHELXL 97, Program for the Solution and Refinement of Crystal Structures   University of Göttingen; Germany: 1997. 
  • 9 El Kaim L. Grimaud L. Patil P. Org. Lett.  2011,  13:  1261 
  • 10 Koldobskii GI. Russ. J. Org. Chem.  2006,  42:  469 
  • 11a Schuren FHJ, Thijssen HMWM, and Montijn RC. inventors; EP  1,769,796. 
  • 11b Caldwell CG, Chiang Y, Dorn C, Finke P, Hale J, Maccoss M, Mills S, and Robichaud A. inventors; US  5,877,191. 
  • 11c Chen L, Dillon MP, Feng L, Hawley RC, and Yang M. inventors; WO  2009,077,371. 
  • 11d Denhart DJ, Degnan AP, Tora GO, Han Y, Ramkumar R, Ditta JL, and Gillman KW. inventors; WO  2007,121,389. 
  • 12 Su W. Eur. J. Org. Chem.  2006,  12:  2723 
  • 13 Kundu D. Majee A. Hajra A. Tetrahedron Lett.  2009,  50:  2668 
  • 14a Mueller B, Sauter H, Wingert H, Koenig H, Roehl F, Ammermann E, and Lorenz G. inventors; EP  579,071. 
  • 14b Neunhoeffer H. Metz H.-J. Liebigs Ann. Chem.  1983,  1476 
  • 14c Boehm H.-J, Seitz W, Hornberger W, Hoeffken HW, Pfeiffer T, Koser S, and Mack H. inventors; US  6,455,671. 
  • 15 Dighe SN. Jain KS. Srinivasan KV. Tetrahedron Lett.  2009,  50:  6139 
7

X-ray crystal structure analysis for C8H5ClFN5O2, M = 257.62 g mol: A suitable single crystal of the title compound was selected under a polarization microscope and mounted in a glass capillary (d = 0.3 mm). The crystal structure was determined by X-ray diffraction analysis using graphite monochromated MoKα radiation (0.71073 Å) [T = 223(2) K], whereas the scattering intensities were collected with a single crystal diffractometer (STOE IPDS II). The crystal structure was solved by Direct Methods using SHELXS-978 and refined using alternating cycles of least squares refinements against F ² (SHELXL-978). All non-H atoms were located in Difference Fourier maps and were refined with anisotropic displacement parameters. The H positions were determined by a final Difference Fourier Synthesis. C8H5ClFN5O2 crystallized in the orthorhombic space group Pna21 (No. 33), lattice parameters a = 13.458(4) Å, b = 6.058(2) Å, c = 25.281(9) Å, β = 103.88(3)˚, V = 2061.1(1) ų, Z = 8, d calc = 1.660 g cm, F(000) = 1040 using 3597 independent reflections and 348 parameters. R1 = 0.0605, wR2 = 0.1023 [I > 2σ(I)], goodness of fit on F2 = 1.085, residual electron density = 0.672 and -0.424 e Å. Further details of the crystal structure investigations have been deposited with the Cambridge Crystallographic Data Center, CCDC 826045. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK [Fax:
+44 (1223)336 033; e-mail: fileserv@ccdc.ac.uk or
http://www.ccdc.cam.ac.uk].