Planta Med 2009; 75(14): 1542-1547
DOI: 10.1055/s-0029-1185809
Biochemistry, Molecular Biology and Biotechnology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Isolation and Identification of Novel Genes Involved in Artemisinin Production from Flowers of Artemisia annua Using Suppression Subtractive Hybridization and Metabolite Analysis

Shuoqian Liu1 , Na Tian2 , Juan Li1 , Jianan Huang1 , 2 , Zhonghua Liu1 , 2
  • 1Natural Products Research Center, Hunan Agricultural University, Changsha, P. R. China
  • 2College of Horticulture and Hardening, Hunan Agricultural University, Changsha, P. R. China
Further Information

Publication History

received March 9, 2009 revised April 28, 2009

accepted May 17, 2009

Publication Date:
23 June 2009 (online)

Abstract

Malaria is a global health problem that threatens 300–500 million people and kills more than one million people annually. Artemisinin is highly effective against multidrug-resistant Plasmodium falciparum and it has been widely used as part of the artemisinin-based combination therapies against malaria. To elucidate the biosynthetic pathway of artemisinin and to clone related genes in Artemisia annua, differentially expressed genes between blooming flowers and flower buds were isolated and characterized by a combined approach of suppression subtractive hybridization (SSH) and metabolite analysis. A total of 350 cDNA clones from a subtractive cDNA library were randomly picked, sequenced and analyzed and 253 high-quality sequences were obtained. BLASTX comparisons indicated that about 9.9 % of the clones encoded enzymes involved in isoprenoid (including artemisinin) biosynthesis. The expression of 4 gene transcripts involved in artemisinin biosynthesis was examined by RT‐PCR and the results confirmed the higher expression of these transcripts in blooming flowers than in flower buds. In addition, 2 putative transcript factors transparenta testa glabra 1 (TTG1) and ENHANCER OF GLABRA3 (GL3), which promote trichome initiation, were presented in the library. Finally, this study demonstrated that the increase of expression level of the putative TTG1 gene correlated with the improvement of glandular trichome density and artemisinin production in A. annua leaves. The subtractive cDNA library described in the present study provides important candidate genes for future research in order to increase the artemisinin content in A. annua.

References

  • 1 Greenwood B, Mutabingwa T. Malaria in 2002.  Nature. 2002;  415 670-672
  • 2 Duffy P E, Mutabingwa T K. Artemisinin combination therapies.  Lancet. 2006;  367 2037-2039
  • 3 Abdin M Z, Israr M, Rehman R U, Jain S K. Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production.  Planta Med. 2003;  69 289-299
  • 4 Covello P S, Teoh K H, Polichuk D R, Reed D W, Nowak G. Functional genomics and the biosynthesis of artemisinin.  Phytochemistry. 2007;  68 1864-1871
  • 5 Bouwmeester H J, Wallaart T E, Janssen M H, Van L B, Jansen B J, Posthumus M A, Schmidt C O, De Kraker J W, König W A, Franssen M C. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis.  Phytochemistry. 1999;  52 843-854
  • 6 Mercke P, Bengtsson M, Bouwmeester H J, Posthumus M A, Brodelius P E. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L.  Arch Biochem Biophys. 2000;  381 173-180
  • 7 Wallaart T E, Bouwmeester H J, Hille J, Poppinga L, Maijers N C. Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin.  Planta. 2001;  212 460-465
  • 8 Yang Y Z, Little B, Meshnick S R. Alkylation of proteins by artemisinin. Effects of heme, pH, and drug structure.  Biochem Pharmacol. 1994;  48 569-573
  • 9 Martin V J, Pitera D J, Withers S T, Newman J D, Keasling J D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids.  Nat Biotechnol. 2003;  21 796-802
  • 10 Bertea C M, Freije J R, van der Woude H, Verstappen F W, Perk L, Marquez V, De Kraker J W, Posthumus M A, Jansen B J, de Groot A, Franssen M C, Bouwmeester H J. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua.  Planta Med. 2005;  71 40-47
  • 11 Teoh K H, Polichuk D R, Reed D W, Nowak G, Covello P S. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin.  FEBS Lett. 2006;  580 1411-1416
  • 12 Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, Chang M C, Withers S T, Shiba Y, Sarpong R, Keasling J D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast.  Nature. 2006;  440 940-943
  • 13 Zhang Y, Teoh K H, Reed D W, Maes L, Goossens A, Olson D J, Ross A R, Covello P S. The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua.  J Biol Chem. 2008;  283 21501-21508
  • 14 Bertea C M, Voster A, Verstappen F W, Maffei M, Beekwilder J, Bouwmeester H J. Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library.  Arch Biochem Biophys. 2006;  448 3-12
  • 15 Ferreira J F, Simon J E, Janick J. Developmental studies of Artemisia annua: flowering and artemisinin production under greenhouse and field conditions.  Planta Med. 1995;  61 167-170
  • 16 Park J, Kim J, Hahn B, Kim K, Ha S, Kim J, Kim Y. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization.  Plant Sci. 2004;  166 953-961
  • 17 Rebrikov D V, Desai S M, Siebert P D, Lukyanov S A. Suppression subtractive hybridization.  Methods Mol Biol. 2004;  258 107-134
  • 18 Liu S, Tian N, Liu Z, Huang J, Li J, Ferreira J F. Affordable and sensitive determination of artemisinin in Artemisia annua L. by gas chromatography with electron-capture detection.  J Chromatogr A. 2008;  1190 302-306
  • 19 The Arabidopsis Genome Initiative . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.  Nature. 2000;  408 796-815
  • 20 Lommen W J, Schenk E, Bouwmeester H J, Verstappen F W. Trichome dynamics and artemisinin accumulation during development and senescence of Artemisia annua leaves.  Planta Med. 2006;  72 336-345
  • 21 Baraldi R, Isacchi B, Predieri S, Marconi G, Vincieri F F. Distribution of artemisinin and bioactive flavonoids from Artemisia annua L. during plant growth.  Biochem Syst Ecol. 2008;  36 340-348
  • 22 Towler M J, Weathers P J. Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways.  Plant Cell Rep. 2007;  26 2129-2136
  • 23 Kasahara H, Jiao Y, Bedgar D L, Kim S J, Patten A M, Xia Z Q, Davin L B, Lewis N G. Pinus taeda phenylpropenal double-bond reductase: purification, cDNA cloning, heterologous expression in Escherichia coli, and subcellular localization in P. taeda.  Phytochemistry. 2006;  67 1765-1780
  • 24 Wallaart T E, van Uden W, Lubberink H GM, Woerdenbag H J, Pras N, Quax W J. Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of artemisinin.  J Nat Prod. 1999;  62 430-433
  • 25 Larkin J C, Oppenheimer D G, Lloyd A M, Paparozzi E T, Marks M D. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development.  Plant Cell. 1994;  6 1065-1076
  • 26 Aziz N, Paiva N L, May G D, Dixon R A. Transcriptome analysis of alfalfa glandular trichomes.  Planta. 2005;  221 28-38
  • 27 Yang R Y, Feng L L, Yang X Q, Yin L L, Xu X L, Zeng Q P. Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants.  Planta Med. 2008;  74 1510-1516
  • 28 Traw M B, Bergelson J. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis.  Plant Physiol. 2003;  133 1367-1375
  • 29 Boughton A J, Hoover K, Felton G W. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. .  J Chem Ecol. 2005;  31 2211-2216
  • 30 Zhang L, Ye H. Effect of development stage on the artemisinin content and the sequence characterized amplified region (SCAR) marker of high-artemisinin yielding strains of Artemisia annua L.  J Integr Plant Biol. 2006;  48 1054-1062

Prof. Dr. Zhonghua Liu

Natural Products Research Center
Hunan Agricultural University

Changsha 410128

People's Republic of China

Phone: + 86 73 14 63 53 04

Fax: + 86 73 14 63 53 06

Email: larking_liu@yahoo.com

>