CC BY 4.0 · SynOpen 2024; 08(01): 63-67
DOI: 10.1055/a-2263-8235
paper

Cobalt–Magnesium and Cobalt–Calcium Heterotrimetallic Dinitrogen Complexes

Jocelyn Polanco
,
Theresa Knoell
,
Abolghasem Gus Bakhoda
This work was supported by the instrumentation provided through the National Science Foundation (NSF) under Grant No. 0923051. A.B. gratefully acknowledges financial support of Towson University through research grants from the Jess and Mildred Fisher College of Science and Mathematics (FCSM).


In memory of Davood Amiri (Feb 1974–Apr 2022)

Abstract

We report the use of alkaline earth metals magnesium and calcium for the reduction of the cobalt(II) complex [ i Pr2NN]Co(μ-Cl)2Li(thf)2 [ i Pr2NN = 2,4-bis(2,6-diisopropylphenylimido)pentyl] that resulted in heterotrimetallic dinitrogen complexes with a rare example of a [Co–N2–M–N2–Co] core where M = Mg and Ca. The dinitrogen ligands in these new complexes showed weakened N–N bonds, as judged by infrared spectroscopy, and the crystal structures of the complexes were illustrated by X-ray crystallography. These cobalt complexes can be isolated as pure solids that are stable in solutions of non-coordinating solvents such as n-pentane or cyclohexane, as well as tetrahydrofuran. These results demonstrate the correlation between the binding mode of the Lewis acid and N–N weakening in heterotrimetallic dinitrogen complexes.

Supporting Information



Publikationsverlauf

Eingereicht: 16. Januar 2024

Angenommen nach Revision: 05. Februar 2024

Accepted Manuscript online:
07. Februar 2024

Artikel online veröffentlicht:
29. Februar 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Fryzuk MD. Chem. Commun. 2013; 49: 4866
  • 2 Burford RJ, Fryzuk MD. Nat. Rev. Chem. 2017; 1: 0026
  • 3 Chalkley MJ, Drover MW, Peters JC. Chem. Rev. 2020; 120: 5582
  • 4 Kim S, Loose F, Chirik PJ. Chem. Rev. 2020; 120: 5637
  • 5 Tanabe Y, Nishibayashi Y. Coord. Chem. Rev. 2022; 472: 214783
  • 6 Chen JG, Crooks RM, Seefeldt LC, Bren KL, Bullock RM, Darensbourg MY, Holland PL, Hoffman B, Janik MJ, Jones AK, Kanatzidis MG, King P, Lancaster KM, Lymar SV, Pfromm P, Schneider WF, Schrock RR. Science 2018; 360: eaar6611
  • 7 Smith C, Hill AK, Torrente-Murciano L. Energy Environ. Sci. 2020; 13: 331
  • 8 Tanabe Y, Nishibayashi Y. Coord. Chem. Rev. 2019; 381: 135
  • 9 MacLeod KC, Holland PL. Nat. Chem. 2013; 5: 559
  • 10 Hazari N. Chem. Soc. Rev. 2010; 39: 4044
  • 11 Crossland JL, Tyler DR. Coord. Chem. Rev. 2010; 254: 1883
  • 12 Fout AR, Basuli F, Fan H, Tomaszewski J, Huffman JC, Baik M, Mindiola DJ. Angew. Chem. Int. Ed. 2006; 45: 3291
  • 13 Bowman AC, Milsmann C, Hojilla Atienza CC, Lobkovsky E, Wieghardt K, Chirik PJ. J. Am. Chem. Soc. 2010; 132: 1676
  • 14 Siedschlag RB, Bernales V, Vogiatzis KD, Planas N, Clouston LJ, Bill E, Gagliardi L, Lu CC. J. Am. Chem. Soc. 2015; 137: 4638
  • 15 Clouston LJ, Bernales V, Carlson RK, Gagliardi L, Lu CC. Inorg. Chem. 2015; 54: 9263
  • 16 Li M, Gupta SK, Dechert S, Demeshko S, Meyer F. Angew. Chem. Int. Ed. 2021; 60: 14480
  • 17 Choi J, Lee Y. Angew. Chem. Int. Ed. 2019; 58: 6938
  • 18 Eaton MC, Catalano VJ, Shearer J, Murray LJ. J. Am. Chem. Soc. 2021; 143: 5649
  • 19 Gao Y, Li G, Deng L. J. Am. Chem. Soc. 2018; 140: 2239
  • 20 Kokubo Y, Wasada-Tsutsui Y, Yomura S, Yanagisawa S, Kubo M, Kugimiya S, Kajita Y, Ozawa T, Masuda H. Eur. J. Inorg. Chem. 2020; 1456
  • 21 Anderson JS, Rittle J, Peters JC. Nature 2013; 501: 84
  • 22 Arashiba K, Eizawa A, Tanaka H, Nakajima K, Yoshizawa K, Nishibayashi Y. Bull. Chem. Soc. Jpn. 2017; 90: 1111
  • 23 Chalkley MJ, Del Castillo TJ, Matson BD, Roddy JP, Peters JC. ACS Cent. Sci. 2017; 3: 217
  • 24 Ashida Y, Arashiba K, Nakajima K, Nishibayashi Y. Nature 2019; 568: 536
  • 25 Betley TA, Peters JC. J. Am. Chem. Soc. 2003; 125: 10782
  • 26 Yandulov DV, Schrock RR. Science 2003; 301: 76
  • 27 Dugan TR, MacLeod KC, Brennessel WW, Holland PL. Eur. J. Inorg. Chem. 2013; 3891
  • 28 Apps SL, Miller PW, Long NJ. Chem. Commun. 2019; 55: 6579
  • 29 Rösch B, Gentner TX, Langer J, Färber C, Eyselein J, Zhao L, Ding C, Frenking G, Harder S. Science 2021; 371: 1125
  • 30 Mondal R, Yuvaraj K, Rajeshkumar T, Maron L, Jones C. Chem. Commun. 2022; 58: 12665
  • 31 Rovaletti A, De Gioia L, Greco C, Arrigoni F. Dalton Trans. 2023; 52: 7966
  • 32 Fu X, Niemann VA, Zhou Y, Li S, Zhang K, Pedersen JB, Saccoccio M, Andersen SZ, Enemark-Rasmussen K, Benedek P, Xu A, Deissler NH, Mygind JB. V, Nielander AC, Kibsgaard J, Vesborg PC. K, Nørskov JK, Jaramillo TF, Chorkendorff I. Nat. Mater. 2024; 23: 101
  • 33 Panda A, Stender M, Wright RJ, Olmstead MM, Klavins P, Power PP. Inorg. Chem. 2002; 41: 3909
  • 34 Holland PL. Dalton Trans. 2010; 39: 5415
  • 35 Le Roy RJ, Huang Y, Jary C. J. Chem. Phys. 2006; 125: 164310
  • 36 CCDC 2309166 (2) and CCDC 2309167 (3) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 37 Ding K, Pierpont AW, Brennessel WW, Lukat-Rodgers G, Rodgers KR, Cundari TR, Bill E, Holland PL. J. Am. Chem. Soc. 2009; 131: 9471