Synthesis 2024; 56(09): 1485-1497
DOI: 10.1055/a-2243-4727
paper

Synthesis of Thiazole-fused Tricyclic Quinazolinone Alkaloids and Their Derivatives

,
Corentin Layec
,
Corinne Fruit
,
This work was partially supported by the Université de Rouen, Normandy, the Institut National des Sciences Appliquées Rouen (INSA Rouen Normandy), the Centre National de la Recherche Scientifique (CNRS), the European Regional Development Fund (ERDF), Labex SynOrg (ANR-11-LABX-0029), Carnot Institute I2C, the XL-Chem Graduate School of Research (ANR-18-EURE-0020 XL CHEM), and the Région Normandie. N.B. thanks the Ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation (MESRI) for a PhD grant. C.L. thanks the XL-Chem Graduate School of Research for a grant.


Abstract

The synthesis of thiazole-fused derivatives of tricyclic quinazolinones hitherto undescribed was successfully achieved by replacing anthranilic acid or its derivatives by isomeric polyfunctionalized benzothiazole analogues of anthranilic methyl esters. Some of the new heterocyclic systems are inspired by natural alkaloids such as mackinazolinone, deoxyvasicinone, and isaindigotone, showing interesting biological properties. The microwave-assisted method developed is a variant of the Niementowski reaction and was also applied to the synthesis of ring-extended rutaecarpine derivatives.

Supporting Information



Publication History

Received: 20 December 2023

Accepted after revision: 11 January 2024

Accepted Manuscript online:
11 January 2024

Article published online:
12 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Michael JP. Nat. Prod. Rep. 2007; 24: 223
    • 2b Khan I, Ibrar A, Ahmed W, Saeed A. Eur. J. Med. Chem. 2015; 90: 124
    • 2c He D, Wang M, Zhao S, Shu Y, Zeng H, Xiao C, Lu C, Liu Y. Fitoterapia 2017; 119: 136
    • 2d Shang X.-F, Morris-Natschke SL, Liu Y.-Q, Guo X, Xu X.-S, Goto M, Li J.-C, Zhang G.-Y, Lee K.-H. Med. Res. Rev. 2018; 38: 775
    • 2e Shang X.-F, Morris-Natschke SL, Yang GZ, Liu Y.-Q, Guo X, Xu X.-S, Goto M, Li J.-C, Zhang G.-Y, Lee K.-H. Med. Res. Rev. 2018; 38: 1614
    • 2f Auti PS, George G, Paul AT. RSC Adv. 2020; 10: 41353
    • 3a Amin AH, Mehta DR. Nature 1959; 184: 1317
    • 3b Mehta DR, Naravane JS, Desai RM. J. Org. Chem. 1963; 28: 445
    • 3c Atta Ur Rahman, Sultana N, Akhter F, Nighat F, Choudhary MI. Nat. Prod. Lett. 1997; 10: 249
    • 3d Fabricant DS, Farnsworth NR. Environ. Health Perspect. 2001; 109: 69
    • 4a Du HT, Liu XL, Xie JS, Ma F. ACS Chem. Neurosci. 2019; 10: 2397
    • 4b Chen X, Xia F, Zhao Y, Ma J, Ma Y, Zhang D, Yang L, Sun P. Chin. J. Chem. 2020; 38: 1239
    • 4c Nerella A, Jeripothula M. Bioorg. Med. Chem. Lett. 2021; 49: 128212
    • 4d Lee SE, Kim MJ, Hillman PF, Oh DC, Fenical W, Nam SJ, Lim KM. Mar. Drugs 2022; 20: 155
    • 4e Sharma R, Jee EC, Mathew J, Sharma S, Rao NV, Pan C.-H, Lee SB, Dhingra A, Grewal AS, Liou JP, Guru SK, Nepali K. Eur. J. Med. Chem. 2022; 240: 114602
    • 4f Du K, Yang C, Zhou Z, Ma Y, Tian Y, Zhang R, Zhang H, Jiang X, Zhu H, Liu H, Chen P, Liu Y. Int. J. Mol. Sci. 2022; 23: 8028
    • 4g Zeng Y, Nie L, Liu L, Niu C, Li Y, Bozorov K, Zhao J, Shen J, Aisa HA. J. Heterocycl. Chem. 2022; 59: 1086
  • 5 John SP, Singh A, Sun J, Pierre MJ, Alsalih L, Lipsey C, Traore Z, Balcom-Luker S, Bradfield CJ, Song J, Markowitz TE, Smelkinson M, Ferrer M, Fraser ID. C. Cell Rep. 2022; 41: 111441
    • 6a Liljegren DR. Phytochemistry 1968; 7: 1299
    • 6b Liljegren DR. Phytochemistry 1971; 10: 2661
    • 7a Shakhidoyatov KhM, Elmuradov BZh. Chem. Nat. Compd. 2014; 50: 781
    • 7b Kshirsagar UA. Org. Biomol. Chem. 2015; 13: 9336
    • 8a Hédou D, Deau E, Harari M, Sanselme M, Fruit C, Besson T. Tetrahedron 2014; 70: 5541
    • 8b Hédou D, Harari M, Godeau J, Dubouilh-Benard C, Fruit C, Besson T. Tetrahedron Lett. 2015; 56: 4088
    • 8c Broudic N, Pacheco-Benichou A, Fruit C, Besson T. Synthesis 2023; 55: 3263
    • 9a Appel R, Janssen H, Siray M, Knoch F. Chem. Ber. 1985; 118: 1632
    • 9b Rees CW. J. Heterocycl. Chem. 1992; 29: 639
    • 10a Besson T, Rees CW. J. Chem. Soc., Perkin Trans. 1 1995; 1659
    • 10b English RF, Rakitin OA, Rees CW, Vlasova OG. J. Chem. Soc., Perkin Trans. 1 1997; 201
    • 10c Bénéteau V, Besson T, Rees CW. Synth. Commun. 1997; 27: 2275
    • 10d Besson T, Dozias M.-J, Guillard J, Rees CW. J. Chem. Soc., Perkin Trans. 1 1998; 3925
    • 10e Frère S, Thiéry V, Besson T. Synth. Commun. 2003; 33: 3789
  • 11 Broudic N, Pacheco-Benichou A, Fruit C, Besson T. Molecules 2022; 27: 8426
  • 12 Zeng Y, Nie L, Bozorov K, Ruzi Z, Song B, Zhao J, Aisa HA. J. Heterocycl. Chem. 2022; 59: 555
  • 13 Campos JF, Pacheco-Benichou A, Fruit C, Besson T, Berteina-Raboin S. Synthesis 2020; 52: 3071
    • 14a Campos JF, Cailler M, Claudel R, Prot B, Besson T, Berteina-Raboin S. Molecules 2021; 26: 1074
    • 14b Messire G, Ferreira V, Caillet E, Bodin L, Auville A, Berteina-Raboin S. Molecules 2023; 28: 6924
  • 15 Lee ES, Park J.-G, Jahng Y. Tetrahedron Lett. 2003; 44: 1883
    • 16a Son J.-K, Chang HW, Jahng Y. Molecules 2015; 20: 10800
    • 16b Huang G, Drakopoulos A, Saedtler M, Zou H, Meinel L, Heilmann J, Decker M. Bioorg. Med. Chem. Lett. 2017; 27: 4937
  • 17 Foley CA, Al-Issa YA, Hiller KP, Mulcahy SP. ACS Omega 2019; 4: 9807
  • 18 Tan J.-H, Ou T.-M, Hou J.-Q, Lu Y.-J, Huang S.-L, Luo H.-B, Wu J.-Y, Huang Z.-S, Wong K.-Y, Gu L.-Q. J. Med. Chem. 2009; 52: 2825
  • 19 Harari M, Couly F, Fruit C, Besson T. Org. Lett. 2016; 18: 3282
  • 20 Bergman J, Bergman S. J. Org. Chem. 1985; 50: 1246
  • 21 Tahtouh T, Durieu E, Villiers B, Bruyère C, Nguyen TL, Fant X, Ahn KH, Khurana L, Deau E, Lindberg MF, Sévère E, Miege F, Roche D, Limanton E, L’Helgoual’ch J.-M, Burgy G, Guiheneuf S, Herault Y, Kendall DA, Carreaux F, Bazureau J.-P, Meijer L. J. Med. Chem. 2022; 65: 1396