Synlett 2024; 35(09): 1042-1046
DOI: 10.1055/a-2219-6830
cluster
Chemical Synthesis and Catalysis in Germany

Catalytically Competent Fluorinated Barnase Variants

Alexander Langhans
a   Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20 14195 Berlin, Germany
,
Michael Krummhaar
b   Max Planck Institute of Colloids and Interfaces, Arnimallee 22 14195 Berlin, Germany
,
Christian Roth
b   Max Planck Institute of Colloids and Interfaces, Arnimallee 22 14195 Berlin, Germany
,
Beate Koksch
a   Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20 14195 Berlin, Germany
› Author Affiliations
Financial support for this work was provided by the Deutsche Forschungsgemeinschaft (DFG) through the SFB 1349 Fluor-Spezifische Wechselwirkungen and the graduate school IMPRS (International Max-Planck Research School) on Multiscale Biosystems of the Max-Planck Institute for Colloids and Interfaces.


Abstract

Proteins play critical roles in all living organisms, and their properties and functions result directly from their primary sequences. Fluorine, though seldom found in natural organic compounds, has been shown to impart desirable properties to small molecules and proteins alike. However, studies on the impact of this element in enzyme activity and protein–protein interaction are largely absent from the literature. Here we present a microwave-assisted SPPS method for the total synthesis of site-specifically fluorinated barnase variants, as well as characterization of their folding and activity. CD spectroscopy and fluorescence-based activity assays show that the fluorinated amino acids are generally not perturbative of the protein structure and that enzyme activity, albeit reduced, is retained in all variants.

Supporting Information



Publication History

Received: 05 October 2023

Accepted after revision: 29 November 2023

Accepted Manuscript online:
29 November 2023

Article published online:
05 February 2024

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Minnihan EC, Young DD, Schultz PG, Stubbe J. J. Am. Chem. Soc. 2011; 133: 15942
  • 2 Steiner T, Hess P, Bae JH, Wiltschi B, Moroder L, Budisa N. PLoS One 2008; 3: e1680
  • 3 Newberry RW, Raines RT. 4-Fluoroprolines: Conformational Analysis and Effects on the Stability and Folding of Peptides and Proteins. In Peptidomimetics I . Lubell WD. Springer International Publishing; Cham: 2017: 1-25
  • 4 Crespo MD, Rubini M. PLOS ONE 2011; 6: e19425
  • 5 Gerling UI. M, Salwiczek M, Cadicamo CD, Erdbrink H, Czekelius C, Grage SL, Wadhwani P, Ulrich AS, Behrends M, Haufe G, Koksch B. Chem. Sci. 2014; 5: 819
  • 6 Huhmann S, Koksch B. Eur. J. Org. Chem 2018; 3667
  • 7 Ye S, Loll B, Berger AA, Mülow U, Alings C, Wahl MC, Koksch B. Chem. Sci. 2015; 6: 5246
  • 8 Wehrhan L, Leppkes J, Dimos N, Loll B, Koksch B, Keller BG. J. Phys. Chem. B 2022; 126: 9985
  • 9 Leppkes J, Dimos N, Loll B, Hohmann T, Dyrks M, Wieseke A, Keller BG, Koksch B. RSC Chem. Biol. 2022; 3: 773
  • 10 Bycroft M, Ludvigsen S, Fersht AR, Poulsen FM. Biochemistry 1991; 30: 8697
  • 11 Hartley RW. 2-Barnase and Barstar . In Ribonucleases: Structures and Functions . D’Alessio G, Riordan JF. Academic Press; New York: 1997: 51-100
  • 12 Hartley RW. Trends Biochem. Sci. 1989; 14: 450
  • 13 Mong SK, Vinogradov AA, Simon MD, Pentelute BL. ChemBioChem 2014; 15: 721
  • 14 Hartrampf N, Saebi A, Poskus M, Gates ZP, Callahan AJ, Cowfer AE, Hanna S, Antilla S, Schissel CK, Quartararo AJ, Ye X, Mijalis AJ, Simon MD, Loas A, Liu S, Jessen C, Nielsen TE, Pentelute BL. Science 2020; 368: 980
  • 15 Hohmann T, Dyrks M, Chowdhary S, Weber M, Nguyen D, Moschner J, Koksch B. J. Org. Chem. 2022; 87: 10592
  • 16 Romoff TT, Ignacio BG, Mansour N, Palmer AB, Creighton CJ, Abe H, Moriwaki H, Han J, Konno H, Soloshonok VA. Org. Process Res. Dev. 2020; 24: 294
  • 17 Romoff TT, Palmer AB, Mansour N, Creighton CJ, Miwa T, Ejima Y, Moriwaki H, Soloshonok VA. Org. Process Res. Dev. 2017; 21: 732
  • 18 Jones JH, Ramage WI, Witty MJ. Int. J. Pept. Protein Res. 1980; 15: 301
  • 19 Neumann K, Farnung J, Baldauf S, Bode JW. Nat. Commun. 2020; 11: 982
  • 20 Greenfield NJ. Nat. Protoc. 2006; 1: 2876
  • 21 Okorokov AL, Hartley RW, Panov KI. Protein Expression and Purification 1994; 5: 547
  • 22 Meiering EM, Serrano L, Fersht AR. J. Mol. Biol. 1992; 225: 585
  • 23 Meiering EM, Bycroft M, Fersht AR. Biochemistry 1991; 30: 11348
  • 24 Serrano L, Matouschek A, Fersht AR. J. Mol. Biol. 1992; 224: 847
  • 25 Day AG, Parsonage D, Ebel S, Brown T, Fersht AR. Biochemistry 1992; 31: 6390