Synlett 2024; 35(09): 1019-1022
DOI: 10.1055/a-2204-9522
cluster
Chemical Synthesis and Catalysis in Germany

Bidentate Lewis Acid-Catalyzed Inverse Electron-Demand Diels–Alder Reaction of Phthalazines and Cyclooctynes

Michel Große
a   Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
b   Center of Material Research (LaMa/ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
,
Hermann A. Wegner
a   Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
b   Center of Material Research (LaMa/ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
› Author Affiliations
The authors acknowledge the LOEWE Program of Excellence of the Federal State of Hesse (LOEWE Focus Group PriOSS ‘Principles of On-Surface Synthesis’) for financial support.


Abstract

Herein we report a method for facilitating the inverse-electron-demand Diels–Alder reaction of 1,2-diazines and cyclooctynes by utilizing a boron-based bidentate Lewis acid catalyst. Readily available electron-deficient and electron-rich phthalazines proved to be suitable substrates in this transformation. The described method enables the facile construction of diversely substituted polycyclic aromatic hydrocarbons fused to eight-membered carbocycles.

Supporting Information



Publication History

Received: 15 October 2023

Accepted after revision: 06 November 2023

Accepted Manuscript online:
06 November 2023

Article published online:
13 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Png ZM, Zeng H, Ye Q, Xu J. Chem. Asian J. 2017; 12: 2142
    • 2a Zhang J, Shukla V, Boger DL. J. Org. Chem. 2019; 84: 9397
    • 2b Huang G, Kouklovsky C, de La Torre A. Chem. Eur. J. 2021; 27: 4760
    • 3a Mayer S, Lang K. Synthesis 2017; 49: 830
    • 3b Oliveira BL, Guo Z, Bernardes GJ. L. Chem. Soc. Rev. 2017; 46: 4895
    • 3c Pagel M. J. Pept. Sci. 2019; 25: e3141
    • 3d Haiber LM, Kufleitner M, Wittmann V. Front. Chem. 2021; 9: 654932
    • 4a Blackman ML, Royzen M, Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
    • 4b Devaraj NK, Weissleder R, Hilderbrand SA. Bioconjugate Chem. 2008; 19: 2297
    • 4c Pipkorn R, Waldeck W, Didinger B, Koch M, Mueller G, Wiessler M, Braun K. J. Pept. Sci. 2009; 15: 235
    • 4d Wiessler M, Waldeck W, Kliem C, Pipkorn R, Braun K. Int. J. Med. Sci. 2009; 7: 19
    • 4e Knall A.-C, Kovačič S, Hollauf M, Reishofer D, Saf R, Slugovc C. Chem. Commun. 2013; 49: 7325
    • 4f Ye Q, Neo WT, Lin T, Song J, Yan H, Zhou H, Shah KW, Chua SJ, Xu J. Polym. Chem. 2015; 6: 1487
    • 4g Knall A.-C, Jones AO. F, Kunert B, Resel R, Reishofer D, Zach PW, Kirkus M, McCulloch I, Rath T. Monatsh. Chem. 2017; 148: 855
    • 4h Edem PE, Sinnes J.-P, Pektor S, Bausbacher N, Rossin R, Yazdani A, Miederer M, Kjær A, Valliant JF, Robillard MS, Rösch F, Herth MM. EJNMMI Res. 2019; 9: 49
    • 4i Ravasco JM. J. M, Coelho JA. S. J. Am. Chem. Soc. 2020; 142: 4235
  • 5 Sauer J, Heldmann DK, Hetzenegger J, Krauthan J, Sichert H, Schuster J. Eur. J. Org. Chem. 1998; 2885
    • 6a Boger DL, Coleman RS. J. Org. Chem. 1984; 49: 2240
    • 6b Anderson ED, Boger DL. J. Am. Chem. Soc. 2011; 133: 12285
    • 6c Türkmen YE, Montavon TJ, Kozmin SA, Rawal VH. J. Am. Chem. Soc. 2012; 134: 9062
    • 6d Sumaria CS, Türkmen YE, Rawal VH. Org. Lett. 2014; 16: 3236
    • 6e Glinkerman CM, Boger DL. Org. Lett. 2015; 17: 4002
    • 6f Glinkerman CM, Boger DL. J. Am. Chem. Soc. 2016; 138: 12408
    • 6g Le Fouler V, Chen Y, Gandon V, Bizet V, Salomé C, Fessard T, Liu F, Houk KN, Blanchard N. J. Am. Chem. Soc. 2019; 141: 15901
  • 7 Kessler SN, Neuburger M, Wegner HA. Eur. J. Org. Chem. 2011; 3238
  • 8 Wegner H, Kessler S. Synlett 2012; 23: 699
    • 9a Kessler SN, Neuburger M, Wegner HA. J. Am. Chem. Soc. 2012; 134: 17885
    • 9b Schweighauser L, Bodoky I, Kessler S, Häussinger D, Wegner H. Synthesis 2012; 44: 2195
    • 9c Schweighauser L, Bodoky I, Kessler SN, Häussinger D, Donsbach C, Wegner HA. Org. Lett. 2016; 18: 1330
    • 9d Ahles S, Götz S, Schweighauser L, Brodsky M, Kessler SN, Heindl AH, Wegner HA. Org. Lett. 2018; 20: 7034
    • 9e Ahles S, Ruhl J, Strauss MA, Wegner HA. Org. Lett. 2019; 21: 3927
    • 9f Ruhl J, Ahles S, Strauss MA, Leonhardt CM, Wegner HA. Org. Lett. 2021; 23: 2089
    • 9g Beeck S, Ahles S, Wegner HA. Chem. Eur. J. 2022; 28: e202104085
  • 10 Thalhammer F, Wallfahrer U, Sauer J. Tetrahedron Lett. 1990; 31: 6851
  • 11 Chen W, Wang D, Dai C, Hamelberg D, Wang B. Chem. Commun. 2012; 48: 1736
    • 12a Borrmann A, Milles S, Plass T, Dommerholt J, Verkade JM. M, Wiessler M, Schultz C, van Hest JC. M, van Delft FL, Lemke EA. ChemBioChem 2012; 13: 2094
    • 12b Chupakhin EG, Krasavin MY. Chem. Heterocycl. Comp. 2018; 54: 483
    • 12c Glaser T, Meinecke J, Freund L, Länger C, Luy J.-N, Tonner R, Koert U, Dürr M. Chem. Eur. J. 2021; 27: 8082
    • 12d Glaser T, Meinecke J, Länger C, Heep J, Koert U, Dürr M. J. Phys. Chem. C 2021; 125: 4021
    • 12e Šlachtová V, Bellová S, La-Venia A, Galeta J, Dračínský M, Chalupský K, Dvořáková A, Mertlíková-Kaiserová H, Rukovanský P, Dzijak R, Vrabel M. Angew. Chem. Int. Ed. 2023; 62: e202306828
  • 13 Kessler SN, Wegner HA. Org. Lett. 2012; 14: 3268
  • 14 Poater J, Duran M, Solà M. Front. Chem. 2018; 6: 561
  • 15 Dey S, Manogaran D, Manogaran S, Schaefer HF. J. Phys. Chem. A 2018; 122: 6953
    • 16a Dommerholt J, Schmidt S, Temming R, Hendriks LJ. A, Rutjes FP. J. T, van Hest JC. M, Lefeber DJ, Friedl P, van Delft FL. Angew. Chem. Int. Ed. 2010; 49: 9422
    • 16b Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW. J. Am. Chem. Soc. 2012; 134: 10317
    • 16c Li F, Dong J, Hu X, Gong W, Li J, Shen J, Tian H, Wang J. Angew. Chem. Int. Ed. 2015; 127: 4680
  • 17 Meier H, Schuh-Popitz C, Peiersen H. Angew. Chem. Int. Ed. 1981; 20: 270
    • 18a Kobryn L, Henry WP, Fronczek FR, Sygula R, Sygula A. Tetrahedron Lett. 2009; 50: 7124
    • 18b Yuan C, Saito S, Camacho C, Irle S, Hisaki I, Yamaguchi S. J. Am. Chem. Soc. 2013; 135: 8842
    • 18c Kotani R, Sotome H, Okajima H, Yokoyama S, Nakaike Y, Kashiwagi A, Mori C, Nakada Y, Yamaguchi S, Osuka A, Sakamoto A, Miyasaka H, Saito S. J. Mater. Chem. C 2017; 5: 5248
    • 18d Yamakado T, Takahashi S, Watanabe K, Matsumoto Y, Osuka A, Saito S. Angew. Chem. Int. Ed. 2018; 57: 5438
  • 19 General procedure for the BDLA-catalyzed IEDDA reaction: In a nitrogen-filled glove box, (substituted) phthalazine 1 (0.10 mmol, 1.0 equiv) and BDLA catalyst (5.0 μmol, 5.0 mol%) were suspended in anhydrous and degassed 1,4-dioxane (1.0 mL) in a 4 mL screw-cap vial with a stirrer bar. Cyclooctyne (2) or exo-BCN (1.1–3.0 equiv) was added to the mixture, and the vial was sealed and taken out of the glove box. The mixture was stirred at the given temperature for the given time. Afterwards, the reaction mixture was concentrated in vacuo. The ratio of product to unreacted phthalazine was determined by 1H NMR spectroscopic analysis of the crude mixture. The crude mixture was purified by column chromatography (3 g of silica gel) to afford product 3 or 4
  • 20 ((1r,1aR,11aS)-1a,2,3,10,11,11a-hexahydro-1H-cyclopropa[5,6]cycloocta[1,2-b]naphthalen-1-yl)methanol (4a): Yield: 13 mg (52%); colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.76–7.71 (m, 2 H), 7.56 (s, 2 H), 7.41–7.36 (m, 2 H), 3.38 (d, J = 6.5 Hz, 2 H), 3.10 (ddd, J = 14.1, 8.3, 5.7 Hz, 2 H), 2.92 (dt, J = 14.1, 5.8 Hz, 2 H), 2.59–2.45 (m, 2 H), 1.42–1.25 (m, 3 H), 0.77–0.66 (m, 3 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 141.21 (2 C), 132.49 (2 C), 128.04 (2 C), 127.08 (2 C), 125.24 (2 C), 66.78, 33.63 (2 C), 30.16 (2 C), 29.76 (2 C), 22.03. HRMS (ESI): m/z calcd for C18H20ONa: 275.1406 [M + Na]+; found: 275.1406.