Synthesis 2024; 56(07): 1183-1199
DOI: 10.1055/a-2193-4615
paper
Emerging Trends in Glycoscience

Activation of Stable and Recyclable Phenylpropiolate Glycoside (PPG) Donors by Iron Catalysis

Anjali Aghi
,
Saksham Mishra
,
Amit Kumar
This work is supported by the Science and Engineering Research Board (SERB), New Delhi (grant no CRG/2019/000452) and the Indian Institute of Technology (IIT), Patna. A. Aghi thanks SERB New Delhi for a research fellowship and S. Mishra thanks IIT Patna for a research fellowship.


Abstract

The glycosylation reaction is one of the important aspects of carbohydrate chemistry, where two different units are frequently linked through C–O bonds. In the pursuit of advancing this field, the design and development of sustainable catalytic methods for O-glycosylation, which can provide an alternate and effective tool to traditional protocols involving stoichiometric promoters and classical donors, are considered as highly challenging, yet important facets of glycochemistry. Herein, we report a simple and efficient Fe(III)-catalyzed method for O-glycosylation through the activation of bifunctional phenylpropiolate glycoside (PPG) donors. This mild and effective method involves the use of the inexpensive and less toxic FeCl3 as catalyst and easily synthesizable, benchtop-stable glycosyl ester-based PPG donors, which react with various sugar as well as non-sugar-based acceptors to deliver the corresponding O-glycosides in good yields with moderate anomeric selectivity, along with regeneration of easily separable phenylpropiolic acid. Importantly, d-mannose and l-rhamnose-based PPG donors afforded the corresponding O-glycosides in high α-anomeric selectivity. The reaction conditions were further explored for the synthesis of trisaccharides.

Supporting Information



Publication History

Received: 26 July 2023

Accepted after revision: 17 October 2023

Accepted Manuscript online:
17 October 2023

Article published online:
20 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Cummings RD, Liu F, Vasta G, Varki A, Esko JD. In Essentials of Glycobiology, 2nd ed. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 2009: 475
    • 1b Bertozzi CR, Kiessling LL. Science 2001; 291: 2357
    • 1c Varki A. Glycobiology 1993; 3: 97
    • 2a Varki A. Glycobiology 2017; 27: 3
    • 2b Fernández-Tejada A, Cañada FJ, Jiménez-Barbero J. Chem. Eur. J. 2015; 21: 10616
    • 2c Ernst B, Magnani JL. Nat. Rev. Drug Discov. 2009; 8: 661
    • 3a Das R, Mukhopadhyay B. ChemistryOpen 2016; 5: 401
    • 3b Demchenko AV. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance. Wiley-VCH; Weinheim: 2008
    • 4a Breton C, Fournel-Gigleux S, Palcic MM. Curr. Opin. Struct. Biol. 2012; 22: 540
    • 4b Lairson L, Henrissat B, Davies G, Withers S. Annu. Rev. Biochem. 2008; 77: 521
    • 5a Hou M, Xiang Y, Gao J, Zhang J, Wang N, Shi H, Huang N, Yao H. Org. Lett. 2023; 25: 832
    • 5b Zhan B.-B, Xie K.-S, Zhu Q, Zhou W, Zhu D, Yu B. Org. Lett. 2023; 25: 3841
    • 5c Li T, Li T, Zhuang H, Wang F, Schmidt RR, Peng P. ACS Catal. 2021; 11: 10279
    • 5d DeMent PM, Liu C, Wakpal J, Schaugaard RN, Schlegel HB, Nguyen HM. ACS Catal. 2021; 11: 2108
    • 5e Li Q, Levi SM, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 11865
    • 5f Yu F, Li J, DeMent PM, Tu YJ, Schlegel HB, Nguyen HM. Angew. Chem. Int. Ed. 2019; 58: 6957
    • 5g Nielsen MM, Pedersen CM. Chem. Rev. 2018; 118: 8285
    • 5h Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Science 2017; 355: 162
    • 5i Kowalska K, Pedersen CM. Chem. Commun. 2017; 53: 2040
    • 5j Sun L, Wu X, Xiong D.-C, Ye X.-S. Angew. Chem. Int. Ed. 2016; 55: 8041
    • 6a Jeanneret RA, Johnson SE, Galan MC. J. Org. Chem. 2020; 85: 15801
    • 6b Chatterjee S, Moon S, Hentschel F, Gilmore K, Seeberger PH. J. Am. Chem. Soc. 2018; 140: 11942
    • 6c Leng W.-L, Yao H, He J.-X, Liu X.-W. Acc. Chem. Res. 2018; 51: 628
    • 6d Nigudkar SS, Demchenko AV. Chem. Sci. 2015; 6: 2687
    • 7a Fascione MA, Brabham R, Turnbull WB. Chem. Eur. J. 2016; 22: 3916
    • 7b Yang Y, Zhang X, Yu B. Nat. Prod. Rep. 2015; 32: 1331
    • 7c Fang T, Mo K.-F, Boons G.-J. J. Am. Chem. Soc. 2012; 134: 7545
    • 7d Zhu X, Schmidt RR. Angew. Chem. Int. Ed. 2009; 48: 1900
    • 7e Li Y, Tang P, Chen Y, Yu B. J. Org. Chem. 2008; 73: 4323
    • 7f Codée JD, Litjens RE, van den Bos LJ, Overkleeft HS, van der Marel GA. Chem. Soc. Rev. 2005; 34: 769
    • 7g Plante OJ, Palmacci ER, Andrade RB, Seeberger PH. J. Am. Chem. Soc. 2001; 123: 9545
    • 7h Plante OJ, Andrade RB, Seeberger PH. Org. Lett. 1999; 1: 211
    • 8a Feng Y, Yang J, Cai C, Sun T, Zhang Q, Chai Y. Chin. Chem. Lett. 2022; 33: 4878
    • 8b Cai C, Sun X, Feng Y, Zhang Q, Chai Y. Org. Lett. 2022; 24: 6266
    • 8c Zhang C, Zuo H, Lee GY, Zou Y, Dang Q.-D, Houk K, Niu D. Nat. Chem. 2022; 14: 686
    • 8d Halder S, Addanki RB, Moktan S, Kancharla PK. J. Org. Chem. 2022; 87: 7033
    • 8e Kasdekar N, Walke G, Deshpande K, Hotha S. J. Org. Chem. 2022; 87: 5472
    • 8f Zu Y, Cai C, Sheng J, Cheng L, Feng Y, Zhang S, Zhang Q, Chai Y. Org. Lett. 2019; 21: 8270
    • 8g Imagawa H, Kinoshita A, Fukuyama T, Yamamoto H, Nishizawa M. Tetrahedron Lett. 2006; 47: 4729
    • 9a Javed, Khanam A, Mandal PK. J. Org. Chem. 2022; 87: 6710
    • 9b Ma X, Zheng Z, Fu Y, Zhu X, Liu P, Zhang L. J. Am. Chem. Soc. 2021; 143: 11908
    • 9c Li P, He H, Zhang Y, Yang R, Xu L, Chen Z, Huang Y, Bao L, Xiao G. Nat. Commun. 2020; 11: 405
    • 9d Li X, Li C, Liu R, Wang J, Wang Z, Chen Y, Yang Y. Org. Lett. 2019; 21: 9693
    • 9e Yu B. Acc. Chem. Res. 2018; 51: 507
    • 9f Dong X, Chen L, Zheng Z, Ma X, Luo Z, Zhang L. Chem. Commun. 2018; 54: 8626
    • 9g Li Y, Sun J, Yu B. Org. Lett. 2011; 13: 5508
    • 9h Li Y, Yang X, Liu Y, Zhu C, Yang Y, Yu B. Chem. Eur. J. 2010; 16: 1871
    • 9i Li Y, Yang Y, Yu B. Tetrahedron Lett. 2008; 49: 3604
  • 10 Shaw M, Thakur R, Kumar A. J. Org. Chem. 2018; 84: 589
    • 12a Mo J, Messinis AM, Oliveira JC, Demeshko S, Meyer F, Ackermann L. ACS Catal. 2021; 11: 1053
    • 12b Wang Y, Zhu J, Guo R, Lindberg H, Wang Y.-M. Chem. Sci. 2020; 11: 12316
    • 12c Xie Y, Sun PW, Li Y, Wang S, Ye M, Li Z. Angew. Chem. Int. Ed. 2019; 58: 7097
    • 12d Wei D, Darcel C. Chem. Rev. 2018; 119: 2550
    • 12e Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
    • 13a Yang F, Hou W, Zhu D, Tang Y, Yu B. Chem. Eur. J. 2022; 28: e202104002
    • 13b Geringer SA, Demchenko AV. Org. Biomol. Chem. 2018; 16: 9133
    • 13c Sun G, Wu Y, Liu A, Qiu S, Zhang W, Wang Z, Zhang J. Synlett 2018; 29: 668
    • 13d Qiu S, Zhang W, Sun G, Wang Z, Zhang J. ChemistrySelect 2016; 1: 4840
    • 13e Xolin A, Stévenin A, Pucheault M, Norsikian S, Boyer F.-D, Beau J.-M. Org. Chem. Front. 2014; 1: 992
    • 13f Narayanaperumal S, da Silva RC, Monteiro JL, Corrêa AG, Paixão MW. J. Braz. Chem. Soc. 2012; 23: 1982
    • 13g Salunke SB, Babu NS, Chen C.-T. Chem. Commun. 2011; 47: 10440
  • 14 Hou M, Xiang Y, Gao J, Zhang J, Wang N, Shi H, Huang N, Yao H. Org. Lett. 2023; 25: 832
    • 15a Molla MR, Thakur R, Aghi A, Kumar A. Eur. J. Org. Chem. 2023; e202300079
    • 15b Molla MR, Das P, Guleria K, Subramanian R, Kumar A, Thakur R. J. Org. Chem. 2020; 85: 9955
    • 15c Shaw M, Kumar A. Chem. Asian J. 2019; 14: 4651
    • 15d Shaw M, Kumar Y, Thakur R, Kumar A. Beilstein J. Org. Chem. 2017; 13: 2385
  • 16 Satoh H, Hansen HS, Manabe S, Van Gunsteren WF, Hünenberger PH. J. Chem. Theory Comput. 2010; 6: 1783
    • 17a Geringer SA, Kashiwagi GA, Demchenko AV. J. Org. Chem. 2022; 87: 9887
    • 17b Agoston K, Streicher H, Fuegedi P. Tetrahedron: Asymmetry 2016; 27: 707
  • 18 Gamboa Marin OJ, Hussain N, Ravicoularamin G, Ameur N, Gormand P, Sauvageau J, Gauthier C. Org. Lett. 2020; 22: 5783
  • 19 Banerjee A, Senthilkumar S, Baskaran S. Chem. Eur. J. 2016; 22: 902
  • 20 Lonnecker AT, Lim YH, Felder SE, Besset CJ, Wooley KL. Macromolecules 2016; 49: 7857
  • 21 Heuckendorff M, Premathilake HD, Pornsuriyasak P, Madsen A. Ø, Pedersen CM, Bols M, Demchenko AV. Org. Lett. 2013; 15: 4904
  • 22 Tam PH, Lowary TL. Org. Biomol. Chem. 2010; 8: 181
  • 23 Monrad RN, Pipper CB, Madsen R. Eur. J. Org. Chem. 2009; 3387
  • 24 Ali A, Gowda DC, Vishwakarma RA. Chem. Commun. 2005; 519
  • 25 DeNinno MP, Etienne JB, Duplantier KC. Tetrahedron Lett. 1995; 36: 669
  • 26 Konradsson P, Udodong UE, Fraser-Reid B. Tetrahedron Lett. 1990; 31: 4313
  • 27 Albert R, Dax K, Pleschko R, Stütz AE. Carbohydr. Res. 1985; 137: 282
  • 28 Kohout VR, Pirinelli AL, Pohl NL. Pure Appl. Chem. 2019; 91: 1243