CC BY 4.0 · SynOpen 2023; 07(04): 491-495
DOI: 10.1055/a-2176-1840
letter
Virtual Collection Electrochemical Organic Synthesis

Direct Electrochemical C(sp3)–H Amidation Enabled by Hexafluoroisopropanol (HFIP)

Fengyi Li
a   Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. of China
,
Ke Liu
a   Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. of China
,
Qi Sun
b   Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
,
Sheng Zhang
a   Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. of China
,
Man-Bo Li
a   Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. of China
› Institutsangaben
We are grateful to the National Natural Science Foundation of China (21702113, 92061110, and 22001241), the Anhui University (S020318006/069 and S020118002/113), the Anhui Provincial Natural Science Foundation (2108085Y05 and 2308085Y14), and the Hefei National Laboratory for Physical Sciences at the Microscale (KF2020102) for their financial support.


Abstract

A direct electrochemical amidation of xanthene was readily achieved under direct anodic oxidation. The reactivity of benzamides was significantly enhanced by the virtue of the solvent effect of hexafluoroisopropanol (HFIP). An obvious hydrogen bonding between HFIP and benzamide was detected, and the proton-coupled electron-transfer (PCET) effect was proposed for the enhancement effect of HFIP. In this transformation, a broad range of primary and secondary amides were readily used as amidating reagents, including l-proline-, naproxen-, and probencid-derived amides. We proposed a plausible reaction mechanism for this direct amidation based on the experimental observations.

Supporting Information



Publikationsverlauf

Eingereicht: 01. August 2023

Angenommen nach Revision: 14. September 2023

Accepted Manuscript online:
14. September 2023

Artikel online veröffentlicht:
18. Oktober 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Ertl P, Altmann E, McKenna JM. J. Med. Chem. 2020; 63: 8408

    • For the synthesis of amides, see:
    • 2a Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 2b Ojeda-Porras A, Gamba-Sánchez D. J. Org. Chem. 2016; 81: 11548
    • 2c Pattabiraman VR, Bode JW. Nature 2011; 480: 471

      For the approaches involving C(sp3)–H activation, see:
    • 3a Wang H, Tang G, Li X. Angew. Chem. Int. Ed. 2015; 54: 13049
    • 3b Tan PW, Mak AM, Sullivan MB, Dixon DJ, Seayad J. Angew. Chem. Int. Ed. 2017; 56: 16550
    • 3c Antien K, Geraci A, Parmentier M, Baudoin O. Angew. Chem. Int. Ed. 2021; 60: 22948

      For the approaches involving nitrene insertion, see:
    • 4a Knecht T, Mondal S, Ye J.-H, Das M, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 7117
    • 4b Burman JS, Harris RJ, Farr CM. B, Bacsa J, Blakey SB. ACS Catal. 2019; 9: 5474
    • 4c Lei H, Rovis T. J. Am. Chem. Soc. 2019; 141: 2268
    • 4d Tang J.-J, Yu X, Wang Y, Yamamoto Y, Bao M. Angew. Chem. Int. Ed. 2021; 60: 16426
    • 4e Bakhoda A, Jiang Q, Badiei YM, Bertke JA, Cundari TR, Warren TH. Angew. Chem. Int. Ed. 2019; 58: 3421
    • 5a Breugst M, Tokuyasu T, Mayr H. J. Org. Chem. 2010; 75: 5250
    • 5b Kütt A, Tshepelevitsh S, Saame J, Lõkov M, Kaljurand I, Selberg S, Leito I. Eur. J. Org. Chem. 2021; 1407

      For reviews of synthetic electrochemistry, see:
    • 6a Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
    • 6b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 6c Jiang Y, Xu K, Zeng C.-C. Chem. Rev. 2018; 118: 4485
    • 6d Yoshida J.-i, Shimizu A, Hayashi R. Chem. Rev. 2018; 118: 4702
    • 6e Moeller KD. Chem. Rev. 2018; 118: 4817
    • 6f Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 6g Yuan Y, Lei A. Acc. Chem. Res. 2019; 52: 3309
    • 6h Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
    • 6i Jiao K.-J, Xing Y.-K, Yang Q.-L, Qiu H, Mei T.-S. Acc. Chem. Res. 2020; 53: 300
    • 6j Gandeepan P, Finger LH, Meyer TH, Ackermann L. Chem. Soc. Rev. 2020; 49: 4254
    • 6k Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
    • 6l Cheng X, Lei A, Mei T.-S, Xu H.-C, Xu K, Zeng C. CCS Chem. 2022; 4: 1120
  • 7 Hu X, Zhang G, Nie L, Kong T, Lei A. Nat. Commun. 2019; 10: 5467
  • 8 Hou Z.-W, Liu D.-J, Xiong P, Lai X.-L, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2021; 60: 2943
  • 9 Wang Y, Lin Z, Oliverira JC. A, Ackermann L. J. Org. Chem. 2021; 86: 15935
  • 10 Li F, Liang Y, Zhan X, Zhang S, Li M.-B. Org. Chem. Front. 2022; 9: 5571
    • 11a Zhang S, Li L, Zhang J, Zhang J, Xue M, Xu K. Chem. Sci. 2019; 10: 3181
    • 11b Zhang S, Li L, Li J, Shi J, Xu K, Gao W, Zong L, Li G, Findlater M. Angew. Chem. Int. Ed. 2021; 60: 7275
    • 11c Zhang S, Shi J, Li J, Li M.-B, Li G, Findlater M. CCS Chem. 2022; 4: 1938
    • 11d Liang Y, Zhan X, Li F, Bi H, Fan W, Zhang S, Li M.-B. Chem. Catal. 2023; 3: 100582
    • 11e Zhang S, Liang Y, Liu K, Zhan X, Fan W, Li M.-B, Findlater M. J. Am. Chem. Soc. 2023; 145: 14143
    • 11f Zhang S, Findlater M. ACS Catal. 2023; 13: 8731
  • 12 Colomer I, Chamberlain AE. R, Haughey MB, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 0088
  • 13 Murray PR. D, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Chem. Rev. 2022; 122: 2017

    • For bioactive xanthene, see:
    • 14a Luo L, Jia B.-Z, Wei X.-Q, Xiao Z.-L, Wang H, Sun Y.-M, Shen Y.-D, Lei H.-T, Xu Z.-L. Sens. Actuators, B 2021; 332: 129561
    • 14b Park I.-S, Seo HR, Kim K, Lee H, Shum D, Choi I, Kim J. Biochem. Biophys. Res. Commun. 2020; 527: 709
    • 14c Watterson KR, Hansen SV. F, Hudson BD, Alvarez-Curto E, Raihan SZ, Azevedo CM. G, Martin G, Dunlop J, Yarwood SJ, Ulven T, Milligan G. Mol. Pharmacol. 2017; 91: 630
  • 15 General Procedure for the Electrochemical Amidation (3a as an Example) An undivided cell was equipped with a magnet stirrer, platinum plate (1.5 × 1.5 cm2), and graphite rod (0.6 × 10 cm), as anode and cathode, respectively (the electrolysis setup is shown in Figure S1). Substrate benzamide (1a, 61 mg, 0.5 mmol), 9H-xanthene (2a, 137 mg, 0.75 mmol), and n-Bu4NClO4 (342 mg, 1 mmol) were added to the solvent MeCN/HFIP (9/1 mL). The resulting mixture was allowed to stir and electrolyze under constant current conditions (15 mA) at room temperature for 3 h. The reaction mixture was condensed with a rotary evaporator. The residue was purified by column chromatography (PE/EtOAc = 20/1 to10/1, V/V) on silica gel to afford the desired product 3a (149 mg) in 99% yield. N-(9H-Xanthen-9-yl)benzamide (3a) 149 mg, 99% yield; white solid, mp 227–228 °C. 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 8.0 Hz, 2 H), 7.57 (d, J = 8.0 Hz, 2 H), 7.50 (t, J = 8.0 Hz, 1 H), 7.42 (t, J = 8.0 Hz, 2 H), 7.33 (t, J = 8.0 Hz, 2 H), 7.16–7.10 (m, 4 H), 6.78 (d, J = 12.0 Hz, 1 H), 6.61 (d, J = 8.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 166.5, 151.1, 134.0, 131.8, 129.7, 129.4, 128.6, 127.0, 123.7, 121.0, 116.7, 44.3.
    • 16a Lin M.-Y, Xu K, Jiang Y.-Y, Liu Y.-G, Sun B.-G, Zeng C.-C. Adv. Synth. Catal. 2018; 360: 1665
    • 16b Yang Y.-Z, Song R.-J, Li J.-H. Org. Lett. 2019; 21: 3228
    • 16c Wei B, Qin J.-H, Yang Y.-Z, Xie Y.-X, Ouyang X.-H, Song R.-J. Org. Chem. Front. 2022; 9: 816
    • 16d Chen X, Liu H, Gao H, Li P, Miao T, Li H. J. Org. Chem. 2022; 87: 1056