CC BY 4.0 · SynOpen 2023; 07(04): 466-485
DOI: 10.1055/a-2167-8298
graphical review

Half-Sandwich d6-Metal (CoIII, RhIII, IrIII, RuII)-Catalyzed Enantioselective C–H Activation

Pu-Fan Qian
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
,
Jun-Yi Li
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
,
Yi-Bo Zhou
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
,
Tao Zhou
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
,
Bing-Feng Shi
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
b   College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. of China
c   School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. of China
d   College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. of China
e   School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. of China
› Author Affiliations
Financial support from the National Natural Science Foundation of China [22271250 (T.Z.), 21925109 (B.-F.S.)], Zhejiang Provincial Natural Science Foundation [LD22B030003 (B.-F.S.)], the National Key Research and Development Program of China [2021YFF0701600 (B.-F.S.)], the Fundamental Research Funds for the Central Universities [226-2022-00224 (B.-F. S.), 226-2022-00175 (T.Z.)], the Open Research Fund of School Chemistry and Chemical Engineering, Henan Normal University and the Center of Chemistry for Frontier Technologies of Zhejiang University is gratefully acknowledged.


Abstract

Transition-metal-catalyzed enantioselective C–H activation provides a straightforward strategy to synthesize chiral molecules from readily available sources. In this graphical review, we summarize the progress on half-sandwich d6-metal (CoIII, RhIII, IrIII, RuII)-catalyzed enantioselective C–H functionalization reactions. The review is categorized according to the type of metal catalyst and chiral ligand employed. Representative enantio-determining models and catalytic cycles are presented.



Publication History

Received: 25 July 2023

Accepted after revision: 04 September 2023

Accepted Manuscript online:
06 September 2023

Article published online:
05 October 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Shi B.-F, Maugel N, Zhang Y.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 4882

    • During the preparation of this graphical review, several reports on this topic appeared highlighting the importance of these chiral catalysts, see:
    • 2a Huang L.-T, Kitakawa Y, Yamada K, Kamiyama F, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2023; 62: e202305480
    • 2b Yang H, Zhang R, Zhang S.-Z, Gu Q, You S.-L. ACS. Catal. 2023; 13: 8838
    • 2c Yang H, Yang Z.-Q, Zhang S.-Z, Zhang W.-W, Gu Q, You S.-L. Sci. China Chem. 2023; 66 in press; DOI: 10.1007/s11426 -023-1637-8
    • 2d Zhang S.-Z, Zhang W.-W, Yang H, Gu Q, You S.-L. Chin. J. Org. Chem. 2023; 43: 2926
    • 2e Zheng Y, Zhang W.-Y, Gu Q, Zheng C, You S.-L. Nat. Commun. 2023; 14: 1094
    • 2f Zhang W.-W, Wang Q, Zhang S.-Z, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2023; 62: e202214460
    • 2g Guo W, Pang X, Jiang J, Wang J. Org. Lett. 2023; 25: 3823
    • 2h Zhu X, Wu H, Wang Y, Huang G, Wang F, Li X. Chem. Sci. 2023; 14: 8564
    • 2i Zhu X, Mi R, Yin J, Wang F, Li X. Chem. Sci. 2023; 14: 7999
    • 2j Mi R, Ding Z, Yu S, Crabtree RH, Li X. J. Am. Chem. Soc. 2023; 145: 8150
    • 2k Zhu M, Zhao Y, Li X, Liu B. Org. Lett. 2023; 25: 1839
    • 2l Wang P, Wu H, Zhang X.-P, Huang G, Crabtree RH, Li X. J. Am. Chem. Soc. 2023; 145: 8417
    • 2m Zheng D.-S, Zhang W.-W, Gu Q, You S.-L. ACS Catal. 2023; 13: 5127
    • 3a Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 3b Wencel-Delord J, Colobert F. Chem. Eur. J. 2013; 19: 14010
    • 3c Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
    • 3d Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
    • 3e Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
    • 3f Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 3g Wozniak Ł, Cramer N. Trends Chem. 2019; 1: 471
    • 3h Yoshino T, Satake S, Matsunaga S. Chem. Eur. J. 2020; 26: 7346
    • 3i Zhang Q, Shi B.-F. Acc. Chem. Res. 2021; 54: 2750
    • 3j Zhan B.-B, Jin L, Shi B.-F. Trends Chem. 2022; 4: 220
    • 3k McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 3l Gutekunsta WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 3m Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 3n Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
    • 3o Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
    • 3p Mas-Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 13198
    • 3q Liang H, Wang J. Chem. Eur. J. 2023; 29: e202202461
    • 3r Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
    • 3s Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 6455
    • 3t Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 3u Shaaban S, Davies C, Waldmann H. Eur. J. Org. Chem. 2020; 6512
    • 3v Achar T, Maiti KS, Jana S, Maiti D. ACS Catal. 2020; 10: 13748
    • 3w Wang Q, Liu C.-X, Gu Q, You S.-L. Sci. Bull. 2021; 66: 210
    • 3x Pan C, Yin S.-Y, Gua Q, You S.-L. Org. Biomol. Chem. 2021; 19: 7264
    • 3y Yue Q, Liu B, Liao G, Shi B.-F. ACS Catal. 2022; 12: 9359
    • 3z Yoshino T. Bull. Chem. Soc. Jpn. 2022; 95: 1280
    • 3aa Qian P.-F, Li J.-Y, Zhou T, Shi B.-F. Synthesis 2022; 54: 4784
    • 3ab Ye B, Cramer N. Science 2012; 338: 504
    • 3ac Hyster TK, Knörr L, Ward TR, Rovis T. Science 2012; 338: 500
    • 3ad Hassan IS, Ta AN, Danneman MW, Semakul N, Burns M, Basch CH, Dippon VN, McNaughton BR, Rovis T. J. Am. Chem. Soc. 2019; 141: 4815
    • 4a Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
    • 4b Kolos AV, Nelyubina YV, Sundararaju B, Perekalin DS. Organometallics 2021; 40: 3712
    • 4c Jia Z.-J, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
    • 4d Audic B, Wodrich MD, Cramer N. Chem. Sci. 2019; 10: 781
    • 4e Potter TJ, Kamber DN, Mercado DN, Ellman JA. ACS Catal. 2017; 7: 150
    • 4f Yan X, Zhao P, Liang H, Xie H, Jiang J, Gou S, Wang J. Org. Lett. 2020; 22: 3219
    • 4g Li G, Yan X, Jiang J, Liang H, Zhou C, Wang J. Angew. Chem. Int. Ed. 2020; 59: 22436
    • 4h Liang H, Vasamsetty L, Li T, Jiang J, Pang X, Wang J. Chem. Eur. J. 2020; 26: 14546
    • 4i Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
    • 4j Ye B, Donets PA, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 507
    • 6a Wu L, Xu H, Gao H, Li L, Chen W, Zhou Z, Yi W. ACS Catal. 2021; 11: 2279
    • 6b Wu L, Li L, Zhang H, Gao H, Zhou Z, Yi W. Org. Lett. 2021; 23: 3844
    • 6c Wei Y, Xu H, Chen F, Gao H, Huang Y, Yi W, Zhou Z. New J. Chem. 2022; 46: 5705
    • 6d Wu M, Gao H, Xu H, Yi W, Zhou Z. Chin. Chem. Lett. 2022; 33: 842
    • 6e Maity S, Potter TJ, Ellman JA. Nat. Catal. 2019; 2: 756
    • 6f Mi R, Zhang X, Wang J, Chen H, Lan Y, Wang F, Li X. ACS Catal. 2021; 11: 6692
    • 6g Brandes DS, Sirvent A, Mercado BQ, Ellman JA. Org. Lett. 2021; 23: 2836
    • 6h Wang S.-G, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 2514
    • 6i Yang X, Zheng G, Li X. Angew. Chem. Int. Ed. 2019; 58: 322
    • 6j Mi R, Zheng G, Qi Z, Li X. Angew. Chem. Int. Ed. 2019; 58: 17666
    • 7a Ye B, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 7896
    • 7b Chen X, Yang S, Li H, Wang B, Song G. ACS Catal. 2017; 7: 2392
    • 7c Liu B, Xie P, Zhao J, Wang J, Wang M, Jiang Y, Chang J, Li X. Angew. Chem. Int. Ed. 2021; 60: 8396
    • 7d Li T, Zhou C, Yan X, Wang J. Angew. Chem. Int. Ed. 2018; 57: 4048
    • 7e Wang S.-G, Liu Y, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 18136
    • 7f Wang S.-G, Cramer N. ACS Catal. 2020; 10: 8231
    • 7g Cui W.-J, Wu Z.-J, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 7379
    • 8a Kong L, Han X, Liu S, Zou Y, Lan Y, Li X. Angew. Chem. Int. Ed. 2020; 59: 7188
    • 8b Sun L, Liu B, Wang F, Deng W.-Q, Zhao Y, Chang J, Kong L, Li X. Chem. Commun. 2021; 57: 8268
    • 8c Zheng J, Wang S.-B, Zheng C, You S.-L. J. Am. Chem. Soc. 2015; 137: 4880
    • 8d Zheng C, Zheng J, You S.-L. ACS Catal. 2016; 6: 262
    • 8e Chidipudi SR, Burns DJ, Khan I, Lam HW. Angew. Chem. Int. Ed. 2015; 54: 13975
    • 8f Zheng J, Wang S.-B, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2017; 56: 4540
    • 8g Pham MV, Cramer N. Chem. Eur. J. 2016; 22: 2270
    • 8h Li H, Gontla R, Flegel J, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2019; 58: 307
    • 8i Huang Y.-Q, Wu Z.-J, Zhu L, Gu Q, Lu X, You S.-L, Mei T.-S. CCS Chem. 2022; 4: 3181
    • 8j Wei W, Scheremetjew A, Ackermann L. Chem. Sci. 2022; 13: 2783
    • 9a Shan G, Flegel J, Li H, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2018; 57: 14250
    • 9b Tian M, Bai D, Zheng G, Chang J, Li X. J. Am. Chem. Soc. 2019; 141: 9527
    • 9c Wang F, Qi Z, Zhao Y, Zhai S, Zheng G, Mi R, Huang Z, Zhu X, He X, Li X. Angew. Chem. Int. Ed. 2020; 59: 13288
    • 9d Wang F, Jing J, Zhao Y, Zhu X, Zhang X.-P, Zhao L, Hu P, Deng W.-Q, Li X. Angew. Chem. Int. Ed. 2021; 60: 16628
    • 9e Mi R, Chen H, Zhou X, Li N, Ji D, Wang F, Lan Y, Li X. Angew. Chem. Int. Ed. 2022; 61: e202111860
    • 9f Li H, Yan X, Zhang J, Guo W, Jiang J, Wang J. Angew. Chem. Int. Ed. 2019; 58: 6732
    • 9g Yan Y, Jiang J, Wang J. Angew. Chem. Int. Ed. 2022; 61: e202201522
    • 10a Pan C, Yin S.-Y, Wang S.-B, Gu Q, You S.-L. Angew. Chem. Int. Ed. 2021; 60: 15510
    • 10b Shaaban S, Merten C, Waldmann H. Chem. Eur. J. 2022; 28: e202103365
    • 10c Zheng J, You S.-L. Angew. Chem. Int. Ed. 2014; 53: 13244
    • 10d Zheng J, Cui W.-J, Zheng C, You S.-L. J. Am. Chem. Soc. 2016; 138: 5242
    • 10e Wang Q, Zhang W.-W, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2021; 143: 114
    • 10f Zou Y, Wang P, Kong L, Li X. Org. Lett. 2022; 24: 3189
    • 11a Sun Y, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 364
    • 11b Sun Y, Cramer N. Chem. Sci. 2018; 9: 2981
    • 11c Sun Y, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 15539
    • 11d Brauns M, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 8902
    • 11e Hu P, Kong L, Wang F, Zhu X, Li X. Angew. Chem. Int. Ed. 2021; 60: 20424
    • 11f Shen B, Wan B, Li X. Angew. Chem. Int. Ed. 2018; 57: 15534
    • 12a Wang J, Chen H, Kong L, Wang F, Lan Y, Li X. ACS Catal. 2021; 11: 9151
    • 12b Wang S.-B, Zheng J, You S.-L. Organometallics 2016; 35: 1420
    • 12c Wang S.-B, Gu Q, You S.-L. Organometallics 2017; 36: 4359
    • 12d Wang Q, Nie Y.-H, Liu C.-X, Zhang W.-W, Wu Z.-J, Gu Q, Zheng C, You S.-L. ACS Catal. 2022; 12: 3083
    • 12e Wang Q, Zhang W.-W, Song H, Wang J, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 15678
    • 12f Zhang W.-W, Liu C.-X, Yang P, Zhang S.-Z, Gu Q, You S.-L. Org. Lett. 2022; 24: 564
    • 12g Kurihara T, Kojima M, Yoshino T, Matsunaga S. J. Am. Chem. Soc. 2022; 144: 7058
    • 13a Lin L, Fukagawa S, Sekine D, Tomita E, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2018; 57: 12048
    • 13b Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 18154
    • 13c Huang L.-T, Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Org. Lett. 2020; 22: 8256
    • 13d Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 4271
    • 13e Satake S, Kurihara T, Nishikawa K, Mochizuki T, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Nat. Catal. 2018; 1: 585
    • 13f Hirose J, Wakikawa T, Satake S, Kojima M, Hatano M, Ishihara K, Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 15187
    • 13g Li G, Jiang J, Xie H, Wang J. Chem. Eur. J. 2019; 25: 4688
    • 14a Jang Y.-S, Dieckmann M, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 15088
    • 14b Jang Y.-S, Wozniak Ł, Pedroni J, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 12901
    • 14c Wozniak Ł, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 18532
    • 14d Zimbron JM, Heinisch T, Schmid M, Hamels D, Nogueira ES, Schirmer T, Ward TR. J. Am. Chem. Soc. 2013; 135: 5384
    • 15a Gwon D, Park S, Chang S. Tetrahedron 2015; 71: 4504
    • 15b Zhang C.-W, Hu X.-Q, Dai Y.-H, Yin P, Wang C, Duan W.-L. ACS Catal. 2022; 12: 193
    • 15c Liu W, Yang W, Zhu J, Guo Y, Wang N, Ke J, Yu P, He C. ACS Catal. 2020; 10: 7207
    • 15d Liu L, Song H, Liu Y.-H, Wu L.-S, Shi B.-F. ACS Catal. 2020; 10: 7117
    • 15e Li J.-Y, Xie P.-P, Zhou T, Qian P.-F, Zhou Y.-B, Li H.-C, Hong X, Shi B.-F. ACS Catal. 2022; 12: 9083
    • 16a Ozols K, Jang Y.-S, Cramer N. J. Am. Chem. Soc. 2019; 141: 5675
    • 16b Ozols K, Onodera S, Woźniak Ł, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 655
    • 16c Herraiz AG, Cramer N. ACS Catal. 2021; 11: 11938
    • 16d Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
    • 17a Fukagawa S, Kato Y, Tanaka R, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 1153
    • 17b Sekine D, Ikeda K, Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Organometallics 2019; 38: 3921
    • 17c Liu Y.-H, Li P.-X, Yao Q.-J, Zhang Z.-Z, Huang D.-Y, Le MD, Song H, Liu L, Shi B.-F. Org. Lett. 2019; 21: 1895
    • 17d Liu Y.-H, Xie P.-P, Liu L, Fan J, Zhang Z.-Z, Hong X, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 19112
    • 17e Hirata Y, Sekine D, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2022; 61: e202205341
    • 17f Zhou Y.-B, Zhou T, Qian P.-F, Li J.-Y, Shi B.-F. ACS Catal. 2022; 12: 9806
    • 18a Liang H, Guo W, Li J, Jiang J, Wang J. Angew. Chem. Int. Ed. 2022; 61: e202204926
    • 18b Li Z.-Y, Lakmal HH. C, Qian X, Zhu Z, Donnadieu B, McClain SJ, Xu X, Cui X. J. Am. Chem. Soc. 2019; 141: 15730
    • 18c Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Angew. Chem. Int. Ed. 2020; 59: 3475
    • 18d Dethe DH, Beeralingappa NC, Siddiqui SA, Chavan PN. J. Org. Chem. 2022; 87: 4617
    • 18e Zhou T, Qian P-F, Li J.-Y, Zhou Y.-B, Li H.-C, Chen H.-Y, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 6810
    • 18f Huang L.-T, Hirata Y, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Synthesis 2022; 54: 4703
    • 18g Qian P.-F, Zhou T, Li J.-Y, Zhou Y.-B, Shi B.-F. ACS Catal. 2022; 12: 13876
    • 18h Dhawa U, Connon R, Oliveira JC. A, Steinbock R, Ackermann L. Org. Lett. 2021; 23: 2760
    • 18i Li Y, Liou Y.-C, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2022; 61: e202212595