Synthesis 2023; 55(24): 4062-4079
DOI: 10.1055/a-2124-3903
short review

Palladium-Catalyzed Homo-Dimerization of Terminal Alkynes

Xia Chen
a   School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou, 553004, P. R. of China
b   State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, P. R. of China
,
Hong-Yu Guo
b   State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, P. R. of China
,
Xiao-Yu Zhou
a   School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou, 553004, P. R. of China
,
Ming Bao
b   State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, P. R. of China
› Author Affiliations
The authors are grateful to the National Natural Science Foundation of China (22172014, 22062012 and 22262019), the Natural Science Foundation of Guizhou Province (qiankehejichu-ZK [2023]zhongdian048), and the Foundation of Guizhou Educational Committee (qianjiaoji [2023] 088) for financial support. This work was also supported by the Liaoning Revitalization Talents Program (XLYC1802030) and the Natural Science Foundation of Liaoning, China (2019JH3/30100001).


Abstract

The palladium-catalyzed homo-dimerization of terminal alkynes is a powerful and atom-economic method for the preparation of highly unsaturated four-carbon skeletons, which are key structural units found in natural and/or biologically active products and materials. However, during the homo-dimerization of terminal alkynes, a major issue is control of the chemo-, regio-, and stereoselectivity. Thus, over the past few decades, various strategies and methods have been developed that employ palladium catalytic systems for such homo-dimerizations. In this Short Review, we highlight important methods for the selective synthesis of these valuable four-carbon compounds, including conjugated 1,3-enynes, 1,3-diynes, and 1,3-dienes.

1 Introduction

2 Redox-Neutral Homo-Dimerization of Terminal Alkynes for the Synthesis of 1,3-Enynes

2.1 Head-to-Head Dimerization

2.2 Head-to-Tail Dimerization

3 Oxidative Homo-Dimerization of Terminal Alkynes for the Synthesis of 1,3-Diynes

3.1 Unsupported Palladium Catalysts

3.1.1 Choice of Oxidant

3.1.2 Choice of Ligand

3.1.3 Choice of Solvent

3.2 Supported Palladium Catalysts

4 Reductive Homo-Dimerization of Terminal Alkynes for the Synthesis of 1,3-Dienes

5 Conclusion



Publication History

Received: 07 June 2023

Accepted after revision: 06 July 2023

Accepted Manuscript online:
06 July 2023

Article published online:
16 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations. Trost BM, Li C.-J. Wiley-VCH; Weinheim: 2015

    • Selected examples:
    • 2a Dörfler M, Tschammer N, Hamperl K, Hübner H, Gmeiner P. J. Med. Chem. 2008; 51: 6829
    • 2b Mömming M, Kehr G, Wibbeling B, Fröhlich R, Schirmer B, Grimme S, Erker G. Angew. Chem. Int. Ed. 2010; 49: 2414
    • 2c Arai S, Koike Y, Hada H, Nishida A. J. Am. Chem. Soc. 2010; 132: 4522
    • 2d Nishimura A, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2012; 134: 15692
    • 2e Röse P, Garcia CC. M, Pünner F, Harms K, Hilt G. J. Org. Chem. 2015; 80: 7311
  • 3 Trost BM, Masters JT. Chem. Soc. Rev. 2016; 45: 2212
  • 4 Ishikawa M, Ohshita J. J. Organomet. Chem. 1988; 346: C58
  • 5 Rubina M, Gevorgyan V. J. Am. Chem. Soc. 2001; 123: 11107
  • 6 Jahier C, Zatolochnaya OV, Zvyagintsev NV, Ananikov VP, Gevorgyan V. Org. Lett. 2012; 14: 2846
    • 7a Zhang C, Huang J, Trudell ML, Nolan SP. J. Org. Chem. 1999; 64: 3804
    • 7b Huang J, Nolan SP. J. Am. Chem. Soc. 1999; 121: 9889
  • 8 Yang C, Nolan SP. J. Org. Chem. 2002; 67: 591
  • 9 Zatolochnaya OV, Gordeev EG, Jahier C, Ananikov VP, Gevorgyan V. Chem. Eur. J. 2014; 20: 9578
  • 10 Morozov OS, Asachenko AF, Antonov DV, Kochurov VS, Paraschuk DY, Nechaev MS. Adv. Synth. Catal. 2014; 356: 2671
  • 11 Buxaderas E, Alonso DA, Nájera C. RSC Adv. 2014; 4: 46508
    • 12a Organ MG, Chass GA, Fang D.-C, Hopkinson AC, Valente C. Synthesis 2008; 2776
    • 12b Valente C, Pompeo M, Sayah M, Organ MG. Org. Process Res. Dev. 2014; 18: 180
  • 13 Ostrowska S, Szymaszek N, Pietraszuk C. J. Organomet. Chem. 2018; 856: 63
  • 14 Pfeffer C, Wannenmacher N, Frey W, Peters R. ACS Catal. 2021; 11: 5496
    • 15a Stolle A, Szuppa T, Leonhardt SE. S, Ondruschka B, Leonhardt S. Chem. Soc. Rev. 2011; 40: 2317
    • 15b Wang G.-W. Chem. Soc. Rev. 2013; 42: 7668
  • 16 Chen L, Lemma BE, Rich JS, Mack J. Green Chem. 2014; 16: 1101
  • 17 Chen L, Regan M, Mack J. ACS Catal. 2016; 6: 868
  • 18 Sabourin ET. J. Mol. Catal. 1984; 26: 363
    • 19a Trost BM, Chan C, Ruhter G. J. Am. Chem. Soc. 1987; 109: 3486
    • 19b Trost BM, Sorum MT, Chan C, Harms AE, Ruhter G. J. Am. Chem. Soc. 1997; 119: 698
  • 20 Lücking U, Pfaltz A. Synlett 2000; 1261
  • 21 Gevorgyan V, Radhakrishnan U, Takeda A, Rubina M, Rubin M, Yamamoto Y. J. Org. Chem. 2001; 66: 2835
  • 22 Sans V, Trzeciak AM, Luis S, Ziółkowski JJ. Catal. Lett. 2006; 109: 37
  • 23 Chen T, Guo C, Gotob M, Han L.-B. Chem. Commun. 2013; 49: 7498
  • 24 Xu C, Du W, Zeng Y, Dai B, Guo H. Org. Lett. 2014; 16: 948
  • 25 Zhang H, Bao X. RSC Adv. 2015; 5: 84636
    • 26a Ackermann L. Synthesis 2006; 1557
    • 26b Shaikh TM, Weng C.-M, Hong F.-E. Coord. Chem. Rev. 2012; 256: 771
    • 26c Cano I, Huertos MA, Chapman AM, Buntkowsky G, Gutmann T, Groszewicz PB, van Leeuwen PW. N. M. J. Am. Chem. Soc. 2015; 137: 7718
    • 26d Hu C.-Y, Chen Y.-Q, Lin G.-Y, Huang M.-K, Chang Y.-C, Hong F.-E. Eur. J. Inorg. Chem. 2016; 3131
  • 27 Islas RE, Cardenas J, Gavino R, Garcia-Rios E, Lomas-Romero L, Morales-Serna JA. RSC Adv. 2017; 7: 9780
    • 28a Glaser C. Ber. Dtsch. Chem. Ges. 1869; 2: 422
    • 28b Glaser C. Ann. Chem. Pharm. 1870; 154: 137
  • 29 Eglinton G, Galbraith AR. Chem. Ind. (London) 1956; 737
    • 30a Sondheimer F, Amiel Y, Gaoni Y. J. Am. Chem. Soc. 1959; 81: 1771
    • 30b Sondheimer F, Amiel Y, Wolovsky R. J. Am. Chem. Soc. 1957; 79: 4247
    • 30c Siemsen P, Livingston RC, Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
  • 31 Hay AS. J. Org. Chem. 1962; 27: 3320
  • 32 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467
  • 33 Rossi R, Carpita A, Bigelli C. Tetrahedron Lett. 1985; 26: 523
  • 34 Chen C, Ai Z, Lin J, Hong X, Xi C. Synlett 2006; 2454
  • 35 Liu Q, Burton DJ. Tetrahedron Lett. 1997; 38: 4371
  • 36 Lei A, Srivastava M, Zhang X. J. Org. Chem. 2002; 67: 1969
  • 37 Li J.-H, Liang Y, Zhang X.-D. Tetrahedron 2005; 61: 1903
  • 38 Yan J, Wu J, Jin H. J. Organomet. Chem. 2007; 692: 3636
  • 39 Yan J, Lin F, Yang Z. Synthesis 2007; 1301
  • 40 Li J.-X, Liang H.-R, Wang Z.-Y, Fu J.-H. Monatsh. Chem. 2011; 142: 507
  • 41 Williams VE, Swager TM. J. Polym. Sci., Part A: Polym. Chem. 2000; 38: 4669
  • 42 Takahashi A, Endo T, Nozoe S. Chem. Pharm. Bull. 1992; 40: 3181
  • 43 Nguyen P, Yuan Z, Agocs L, Lesley G, Marder TB. Inorg. Chim. Acta 1994; 220: 289
  • 44 Li J.-H, Liang Y, Xie Y.-X. J. Org. Chem. 2005; 70: 4393
  • 45 Batsanov AS, Collings JC, Fairlamb IJ. S, Holland JP, Howard JA. K, Lin Z, Marder TB, Parsons AC, Ward RM, Zhu J. J. Org. Chem. 2005; 70: 703
  • 46 Crabtree RH. The Organometallic Chemistry of the Transition Metals, 3rd ed. John Wiley and Sons; New York: 2001: 207
  • 47 Wagner RW, Johnson TE, Li F, Lindsey JS. J. Org. Chem. 1995; 60: 5266
  • 48 Toledo A, Funes-Ardoiz I, Maseras F, Albéniz AC. ACS Catal. 2018; 8: 7495
  • 49 Feng X, Zhao Z, Yang F, Jin T, Ma Y, Bao M. J. Organomet. Chem. 2011; 696: 1479
  • 50 Liang H, Ren Z, Wang Y, Guan Z. Chin. J. Catal. 2015; 36: 113
  • 51 Vlassa M, Ciocan-Tarta I, Margineanu F, Oprean I. Tetrahedron 1996; 52: 1337
    • 52a Weskamp T, Kohl FJ, Hieringer W, Gleich D, Herrmann WA. Angew. Chem. Int. Ed. 1999; 38: 2416
    • 52b Schwarz J, Böhm VP. W, Gardiner MG, Grosche M, Herrmann WA, Hieringer W, Raudaschl-Sieber G. Chem. Eur. J. 2000; 6: 1773
  • 53 Bourissou D, Guerret O, Gabbai FP, Bertrand G. Chem. Rev. 2000; 100: 39
  • 54 Herrmann WA, Böhm VP. W, Gstöttmayr CW. K, Grosche M, Reisinger C.-P, Weskamp T. J. Organomet. Chem. 2001; 617-618: 616
  • 55 Shi M, Qian H. Appl. Organomet. Chem. 2006; 20: 771
  • 56 Watarai N, Kawasaki H, Azumaya I, Yamasaki R, Saito S. Heterocycles 2009; 79: 531
  • 57 Hsiao T.-H, Wu T.-L, Chatterjee S, Chiu C.-Y, Lee HM, Bettucci L, Bianchini C, Oberhauser W. J. Organomet. Chem. 2009; 694: 4014
    • 58a Calhorda MJ, Brown JM, Cooley NA. Organometallics 1991; 10: 1431
    • 58b Hayashi T, Konishi M, Kobori Y, Kumada M, Higuchi T, Hirotsu K. J. Am. Chem. Soc. 1984; 106: 158
    • 58c Driver MS, Hartwig JF. J. Am. Chem. Soc. 1996; 118: 7217
    • 58d Marcone JE, Moloy KG. J. Am. Chem. Soc. 1998; 120: 8527
    • 58e Dierkes P, van Leeuwen PW. N. M. J. Chem. Soc., Dalton Trans. 1999; 1519
    • 58f Freixa Z, van Leeuwen PW. N. M. Dalton Trans. 2003; 1890
  • 59 Alonso DA, Nájera C, Pacheco MC. Adv. Synth. Catal. 2003; 345: 1146
  • 60 Yang F, Cui X, Li Y, Zhang J, Ren G, Wu Y. Tetrahedron 2007; 63: 1963
  • 61 Susanto W, Chu C.-Y, Ang WJ, Chou T.-C, Lo L.-C, Lam Y. J. Org. Chem. 2012; 77: 2729
  • 62 Gil-Moltó J, Nájera C. Eur. J. Org. Chem. 2005; 4073
  • 63 Chen S.-N, Wu W.-Y, Tsai F.-Y. Green Chem. 2009; 11: 269
  • 64 Firouzabadi H, Iranpoor N, Kazemi F. J. Mol. Catal. A: Chem. 2011; 348: 94
  • 65 Gillie A, Stille JK. J. Am. Chem. Soc. 1980; 102: 4933
  • 66 Atobe S, Sonoda M, Suzuki Y, Yamamoto T, Masuno H, Shinohara H, Ogawa A. Res. Chem. Intermed. 2013; 39: 359
  • 67 Liu Y, Gu N, Liu P, Xie J, Ma X, Liu Y, Dai B. Appl. Organomet. Chem. 2015; 29: 736
  • 68 Chen B, Guo M, Wen Y, Shen X, Zhou X, Lv M. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 259
  • 69 Guo M, Chen B, Lv M, Zhou X, Wen Y, Shen X. Molecules 2016; 21: 606
  • 70 Urgoitia G, SanMartin R, Herrero MT, Domínguez E. Environ. Chem. Lett. 2017; 15: 157
  • 71 Wang A.-Z, Jiang H.-F. Chin. J. Org. Chem. 2007; 27: 619
  • 72 Ye C, Xiao J.-C, Twamley B, LaLonde AD, Norton MG, Shreeve JM. Eur. J. Org. Chem. 2007; 5095
  • 73 Li J, Mau AW.-H, Strauss CR. Chem. Commun. 1997; 1275
  • 74 Bandini M, Luque R, Budarin V, Macquarrie DJ. Tetrahedron 2005; 61: 9860
  • 75 Zhou L, Zhan H.-Y, Liu H.-L, Jiang H.-F. Chin. J. Org. Chem. 2007; 27: 1413
  • 76 Kurita T, Abe M, Maegawa T, Monguchi Y, Sajiki H. Synlett 2007; 2521
  • 77 Li X, Li D, Bai Y, Zhang C, Chang H, Gao W, Wei W. Tetrahedron 2016; 72: 6996
  • 78 Elhamifar D, Eram A, Moshkelgosha R. Microporous Mesoporous Mater. 2017; 252: 173
    • 79a Rozhkov RV, Larock RC. Tetrahedron Lett. 2004; 45: 911
    • 79b Adamson NJ, Malcolmson SJ. ACS Catal. 2020; 10: 1060
    • 79c Perry GJ. P, Jia T, Procter DJ. ACS Catal. 2020; 10: 1485
    • 79d Wang Z.-L, Wang Y, Xu J.-L, Zhao M, Dai K.-Y, Shan C.-C, Xu Y.-H. Org. Lett. 2021; 23: 4736
    • 79e Sakuragi S, Akiba T, Tanahashi T, Fujihara T. Angew. Chem. Int. Ed. 2022; 61: e202202226
    • 80a Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat. Chem. 2011; 3: 634
    • 80b Liu P, Zhao Y, Qin R, Mo S, Chen G, Fu G, Zheng NF. Science 2016; 352: 797
    • 80c Wang X, Chen W, Zhang L, Yao T, Liu W, Lin Y, Wu Y, Li Y. J. Am. Chem. Soc. 2017; 139: 9419
    • 80d Wang Z, Gu L, Song L, Wang H, Yu R. Mater. Chem. Front. 2018; 2: 1024
  • 81 Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T. Acc. Chem. Res. 2013; 46: 1740
  • 82 Zhao C, Yu H, Wang J, Che W, Li Z, Yao T, Yan W, Chen M, Yang J, Wei S, Wu Y, Li Y. Mater. Chem. Front. 2018; 2: 1317
  • 83 Guo H, Zhang S, Li Y, Yu X, Feng X, Yamamoto Y, Bao M. Angew. Chem. Int. Ed. 2022; 61: e202116870