Synthesis 2022; 54(24): 5479-5490
DOI: 10.1055/a-1898-9752
paper

Electrochemical Cascade Thia-Michael and Thioacetalization of Cyclic Enones

Lalit Yadav
,
Maneesha Maneesha
,
Kamlesh Kumar Dabaria
,
Pooja Kumari Jat
,
Asha Gurjar
,
The Science and Engineering Research (SERB)-DST, New Delhi (CRG/2020/003634).


Abstract

The first electricity-promoted, catalyst-free cascade thia-Michael addition and thioacetalization of cyclic enones with thiols are described. The electro-organic protocol was found to be suitable for both alkyl and aryl thiols, which reacted with a variety of cyclic enones to afford the corresponding tris-sulfane in good to excellent yields. Based on control experiments, it was found that this cascade reaction is chemoselective, involving first thia-Michael addition followed by thioacetalization process.

Supporting Information



Publication History

Received: 15 June 2022

Accepted after revision: 13 July 2022

Accepted Manuscript online:
13 July 2022

Article published online:
22 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ibanez JG, Fitch A, Frontana-Uribe BA, Vasquez-Medrano R. In Encyclopedia of Applied Electrochemistry . Kreysa G, Ota K.-I, Savinell RF. Springer; New York: 2014: 964-971
    • 1b de Kruijff GH. M, Goschler T, Derwich L, Beiser N, Türk OM, Waldvogel SR. ACS Sustainable Chem. Eng. 2019; 7: 10855
    • 2a Chen ZW, Bai R, Annamalai P, Badsara SS, Lee CF. New J. Chem. 2022; 46: 15
    • 2b Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
    • 3a Imada Y, Roeckl JL, Wiebe A, Gieshoff T, Schollmeyer D, Chiba K, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 12136
    • 3b Li J, He L, Liu X, Cheng X, Li G. Angew. Chem. Int. Ed. 2019; 131: 1773
    • 3c Siu JC, Parry JB, Lin S. J. Am. Chem. Soc. 2019; 141: 2825
    • 4a Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 4b Lee C.-F, Basha RS, Badsara SS. In Sulfur Chemistry. Topics in Current Chemistry Collections 2018; 376: 25
    • 4c Annamalai P, Liu K.-C, Badsara SS, Lee C.-F. Chem. Rec. 2021; 21: 3674
    • 4d Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
    • 5a Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
    • 5b Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
    • 5c Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 5d Liu X.-L, Yang K.-W, Zhang Y.-J, Ge Y, Xiang Y, Chang Y.-N, Oelschlaeger P. Bioorg. Med. Chem. Lett. 2016; 26: 4698
    • 7a Deng Y, Nguyen MD, Zou Y, Houk KN, Smith AB. III. Org. Lett. 2019; 21: 1708
    • 7b Hart DJ, Li J, Wu WL, Kozikowski AP. J. Org. Chem. 1997; 62: 5023
    • 8a Xiao X, Feng M, Jiang X. Angew. Chem. Int. Ed. 2016; 55: 14121
    • 8b Li Y, Wang M, Jiang X. ACS Catal. 2017; 7: 7587
    • 8c Basha RS, Chen CW, Reddy DM, Lee CF. Chem. Asian J. 2018; 13, 2475
    • 8d Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
    • 8e Enders D, Lüttgen K, Narine AA. Synthesis 2007; 7: 959
    • 9a Yus M, Nájera C, Foubelo F. Tetrahedron 2003; 59: 6147
    • 9b Sasson R, Hagooly A, Rozen S. Org. Lett. 2003; 5: 769
    • 9c Liu L, Wang G, Jiao J, Li P. Org. Lett. 2017; 19: 6132
    • 9d Vale JR, Rimpiläinen T, Sievänen E, Rissanen K, Afonso CA, Candeias NR. J. Org. Chem. 2018; 83: 1948
    • 9e Orrillo AG, Escalante AM, Furlan RL. Org. Lett. 2017; 19: 1446
    • 10a Chen CT, Lin YD, Liu CY. Tetrahedron 2009; 65: 10470
    • 10b Weng SS, Chang SC, Chang TH, Chyn JP, Lee SW, Lin CA, Chen FK. Synthesis 2010; 1493
    • 10c Jung N, Grassle S, Lutjohann DS, Brase S. Org. Lett. 2014; 16: 1036
    • 10d Chaiseeda K, Chavasiri W. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 1034
    • 10e Alt I, Roshe P, Plietker B. ACS Catal. 2013; 3: 3002
    • 11a Choudhuri K, Pramanik M, Mal P. Eur. J. Org. Chem. 2019; 4822
    • 11b Xing Z, Yang M, Sun H, Wang Z, Chen P, Liu L, Wang X, Xie X, She X. Green Chem. 2018; 20: 5117
    • 11c Liu YC, Reddy DM, Chen XA, Shieh YC, Lee CF. Eur. J. Org. Chem. 2020; 2542
    • 11d Du K, Wang S.-C, Basha RS, Lee C.-F. Adv. Synth. Catal. 2019; 361: 1597
    • 12a Kobayashi S, Ogawa C, Kawamura M, Sugiura M. Synlett 2001; 983
    • 12b Bandini M, Cozzi PG, Giacomini M, Melchiorre P, Selva S, Umani-Ronchi A. J. Org. Chem. 2002; 67: 3700
    • 12c Srivastava N, Banik BK. J. Org. Chem. 2003; 68: 2109
    • 12d Alam MM, Varala R, Adapa SR. Tetrahedron Lett. 2003; 44: 5115
    • 12e Garg SK, Kumar R, Chakraborti AK. Tetrahedron Lett. 2005; 46: 1721
    • 12f Garg SK, Kumar R, Chakraborti AK. Synlett 2005; 1370
    • 13a Hiemstra H, Wynberg H. J. Am. Chem. Soc. 1981; 103: 417
    • 13b Emori E, Arai T, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1998; 120: 4043
  • 14 Khatik GL, Kumar R, Chakraborti AK. Org. Lett. 2006; 8: 2433
    • 15a Sharma G, Kumar R, Chakraborti AK. Tetrahedron Lett. 2008; 49: 4272
    • 15b Firouzabadi H, Iranpoor N, Jafarpour M, Ghaderi A. J. Mol. Catal. A: Chem. 2006; 249: 98
  • 16 Schneider CC, Manarin F, Panatieri RB, Barros OS, Zeni G. J. Braz. Chem. Soc. 2010; 21: 2088
    • 17a Singh P, Bai R, Choudhary R, Sharma MC, Badsara SS. RSC Adv. 2017; 7: 30594
    • 17b Malviya BK, Jaiswal PK, Verma VP, Badsara SS, Sharma S. Org. Lett. 2020; 22: 2323
    • 17c Choudhary R, Singh P, Bai R, Sharma MC, Badsara SS. Org. Biomol. Chem. 2019; 17: 9757
    • 17d Badsara SS, Singh P, Choudhary R, Bai R, Sharma MC. New J. Chem. 2019; 43: 11045
    • 17e Bai R, Choudhary R, Singh P, Thakuria R, Sharma MC, Badsara SS. ChemistrySelect 2018; 3: 3221
    • 17f Choudhary R, Bai R, Singh P, Sharma MC, Badsara SS. Tetrahedron 2017; 73: 4323