CC BY-NC-ND 4.0 · SynOpen 2022; 06(03): 173-178
DOI: 10.1055/a-1896-3987
letter

MnVI-NP–Catalyzed Generation of Nitrile Oxides: Easy Access to Isoxazolines and Isoxazoles via Stereoselective 1,3-Dipolar Cyclo­addition Reactions

Yasmin Saima
a   Vivekananda College, Madhyamgram, India
,
b   Government General Degree College, Kalna-1, India
› Author Affiliations
Research funding by the University Grants Commission (UGC) is gratefully acknowledged.


Abstract

The versatility and effectiveness of MnVI-NPs as a catalyst is examined for the generation of nitrile oxides from aldoximes and subsequent 1,3-dipolar cycloaddition reactions. This synthetic protocol features­ fast reaction convergence under benign reaction conditions, operational simplicity, and the use of inexpensive precursors; it avoids the use of acids or bases. The strategy offers excellent chemo-, regio-, and diastereoselectivity in the 1,3-dipolar cycloaddition reaction of in situ generated nitrile oxides with alkenes and alkynes.

Supporting Information



Publication History

Received: 14 June 2022

Accepted after revision: 08 July 2022

Accepted Manuscript online:
11 July 2022

Article published online:
02 August 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Sun S, Murray CB, Weller D, Folks L, Moser A. Science 2000; 287: 1989
    • 1b Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L.-H. Nano Lett. 2004; 4: 2191
    • 1c Hu A, Yee GT, Lin W. J. Am. Chem. Soc. 2005; 127: 12486
    • 1d Turner M, Golovko VB, Vaughan OP, Abdulkin HP, Berenguer-Murcia A, Tikhov MS, Johnson BF. G, Lambert RM. Nature 2008; 454: 981
    • 1e Sokolova V, Epple M. Angew. Chem. Int. Ed. 2008; 47: 1382
    • 1f Sperling RA, Gil PR, Zhang F, Zanella M, Parak W. J. Chem. Soc. Rev. 2008; 37: 1896
    • 1g Riha SC, Johnson DC, Prieto AL. J. Am. Chem. Soc. 2011; 133: 1383
    • 1h Gayen KS, Sengupta T, Saima Y, Das A, Maiti DK, Mitra A. Green Chem. 2012; 14: 1589
    • 2a Lee YS. Self-Assembly and Nanotechnology: A Force Balance Approach, Chap. 10. John Wiley and Sons; Hoboken: 2008
    • 2b Roduner E. Nanoscopic Materials: Size-Dependent Phenomena . RSC Publishing; Cambridge: 2006
    • 2c Ghosh SK, Pal T. Chem. Rev. 2007; 107: 4797
    • 2d Jiang Q, Lu HM. Surf. Sci. Rep. 2008; 63: 427
    • 2e Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J. Adv. Mater. 2010; 22: 1805
    • 3a Liang R, Cao H, Qian D. Chem. Commun. 2011; 47: 10305
    • 3b Girotto C, Voroshazi E, Cheyns D, Heremans P, Rand BP. ACS Appl. Mater. Interfaces 2011; 3: 3244
  • 4 Khamarui S, Saima Y, Laha RM, Ghosh S, Maiti DK. Sci. Rep. 2015; 863 (5): 1
  • 5 Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK. J. Mater. Chem. 2004; 14: 3406
  • 6 Menaka, Samal SL, Ramanujachary KV, Lofland SE, Govind, Ganguli AK. J. Mater. Chem. 2011; 21: 8566
  • 7 For a report on oxidation of CO by MnO2-NPs, see: Ching S, Kriz DA, Luthy KM, Njagi EC, Suib SL. Chem. Commun. 2011; 47: 8286
  • 8 Nagashima K, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Green Chem. 2010; 12: 2142
    • 9a McCleverty JA, Meyer TJ. Comprehensive Coordination Chemistry II: Transition Metal Group 7 and 8, Vol. 5. Elsevier Pergamon; Oxford (UK): 2005
    • 9b Mark IE, Richardson PR, Bailey M, Maguire AR, Coughlan N. Tetrahedron Lett. 1997; 38: 2339
    • 9c Baqi Y, Giroux S. Corey E. J. 2009; 11: 959

      For the first report on 1,3-dipoles and 1,3-dipolar cycloaddition reactions, see:
    • 10a Curtius T. Ber. Dtsch. Chem. Ges. 1883; 16: 2230
    • 10b Buchner E. Ber. Dtsch. Chem. Ges. 1888; 21: 2637
    • 11a Huisgen R, Sauer J. Chemistry of Alkenes . Interscience; New York: 1964: 806
    • 11b Huisgen R. 1,3-Dipolar Cycloaddition Chemistry, Vol. 1. Padwa A. Wiley; New York: 1984
    • 11c Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 565
    • 11d Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 633
    • 12a Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 12b Fišera L, Ondruš V, Kubáň J, Mičúch P, Blanáriková I, Jäger V. J. Heterocycl. Chem. 2000; 37: 551
    • 12c Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
    • 12d Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 12e Pellissier H. Tetrahedron 2007; 63: 3235
    • 12f Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887
    • 12g Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
    • 13a Chatterjee N, Pandit P, Halder S, Patra A, Maiti DK. J. Org. Chem. 2008; 73: 7775
    • 13b Pandit P, Chatterjee N, Halder S, Hota SK, Patra A, Maiti DK. J. Org. Chem. 2009; 74: 2581
    • 13c Maiti DK, Chatterjee N, Pandit P, Hota SK. Chem. Commun. 2010; 46: 2022
    • 13d Pandit P, Chatterjee N, Maiti DK. Chem. Commun. 2011; 47: 1285
    • 13e Saima Y, Khamarui S, Gayen KS, Pandit P, Maiti DK. Chem. Commun. 2012; 48: 6601
    • 14a Wang Y, Lin CI. R, Vera Q. Org. Lett. 2007; 9: 4155
    • 14b Tsubogo T, Saito S, Seki K, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2008; 130: 13321
    • 14c López-Pérez A, Adrio J, Carretero JC. Angew. Chem. Int. Ed. 2009; 48: 340
    • 14d Shapiro ND, Shi Y, Toste FD. J. Am. Chem. Soc. 2009; 131: 11654
    • 14e Schoder F, Plaia U, Metzner R, Sperber W, Beck W, Fehlhammer WP. Z. Anorg. Allg. Chem. 2010; 636: 700
    • 14f Partridge KM, Guzei IA, Yoon TP. Angew. Chem. Int. Ed. 2010; 49: 930
    • 14g Wang M, Wang Z, Shi Y.-H, Shi X.-X, Fossey JS, Deng W.-P. Angew. Chem. Int. Ed. 2011; 50: 4897
    • 14h Kvaskoff D, Vosswinkel M, Wentrup C. J. Am. Chem. Soc. 2011; 133: 5413
    • 15a Bode JW, Carreira EM. J. Am. Chem. Soc. 2001; 123: 3611
    • 15b Gallos JK, Koumbis AE. Curr. Org. Chem. 2003; 7: 397
    • 15c Cabrera S, Arrayás RG, Carretero JC. J. Am. Chem. Soc. 2005; 127: 16394
    • 15d Trost BM, Silverman SM, Stambuli JP. J. Am. Chem. Soc. 2007; 129: 12398
    • 15e Becer CR, Hoogenboom R, Schubert US. Angew. Chem. Int. Ed. 2009; 48: 4900
    • 15f Candeias NR, Branco LC, Gois PM. P, Afonso CA. M, Trindade AF. Chem. Rev. 2009; 109: 2703
    • 15g Su D, Wang X, Shao C, Xu J, Zhu R, Hu Y. J. Org. Chem. 2011; 76: 188
    • 16a Β2 Isoxazoline derivatives as antidepressants, US Patent 7169786, 2007
    • 16b Andrés JI, Alcázar J, Alonso JM, Alvarez RM, Bakker MH, Biesmans I, Cid JM, De Lucas AI, Drinkenburg W, Fernández J, Font LM, Iturrino L, Langlois X, Lenaerts I, Martínez S, Megens AA, Pastor J, Pullan S, Steckler T. Bioorg. Med. Chem. 2007; 15: 3649
    • 16c Kozikowski AP, Tapadar S, Luchini DN, Kim KH, Billadeau DD. J. Med. Chem. 2008; 51: 4370
    • 17a Jäger V, Colinas PA. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Padwa A, Pearson WH. John Wiley and Sons; Hoboken (NJ): 2003: 361
    • 17b Giomi D, Cordero FM, Machetti F. Comprehensive Heterocyclic Chemistry III, Vol. 4. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 365
    • 17c Sengupta J, Mukhopadhyay R, Bhattacharjya A, Bhadbhade MM. G, Bhosekar V. J. Org. Chem. 2005; 70: 8579
    • 17d Muri D, Carreira EM. J. Org. Chem. 2009; 74: 8695
    • 17e Sperry J, Harris JE. B, Brimble MA. Org. Lett. 2010; 12: 420
    • 17f Singh A, Roth GP. Org. Lett. 2011; 13: 2118
    • 18a Curran DP. J. Am. Chem. Soc. 1983; 105: 5826
    • 18b Kozikowski AP. Acc. Chem. Res. 1984; 17: 410
    • 18c Lee CK. Y, Herlt AJ, Simpson GW, Willis AC, Easton CJ. J. Org. Chem. 2006; 71: 3221
    • 19a Mukaiyama T, Hoshino T. J. Am. Chem. Soc. 1960; 82: 5339
    • 19b Liu K.-C, Shelton BR, Howe RK. J. Org. Chem. 1980; 45: 3916
    • 19c Lee GA. Synthesis 1982; 508
    • 19d Maiti DK, Bhattacharya PK. Synlett 1998; 386
    • 19e Kadowaki A, Nagata Y, Uno H, Kamimura A. Tetrahedron Lett. 2007; 48: 1823
    • 19f Trogu E, Vinattieri C, Sarlo FD, Machetti F. Chem. Eur. J. 2012; 18: 2081
    • 21a Radhakrishna AS, Sivaprakash K, Singh BB. Synth. Commun. 1991; 21: 1625
    • 21b Das B, Holla H, Mahender G, Banerjee J, Reddy MR. Tetrahedron Lett. 2004; 45: 7347
    • 21c Prakash O, Pannu K. ARKIVOC 2007; (xiii): 28
    • 21d Mendelsohn BA, Lee S, Kim S, Teyssier F, Aulakh VS, Ciufolini MA. Org. Lett. 2009; 11: 1539
    • 21e Raihan MJ, Kavala V, Kuo C.-W, Raju BR, Yao C.-F. Green Chem. 2010; 12: 1090
  • 22 Liaskopoulos T, Skoulika S, Tsoungas PG, Varvounis G. Synthesis 2008; 5: 711
    • 23a Muri D, Lohse-Fraefel N, Carreira EM. Angew. Chem. Int. Ed. 2005; 44: 4036
    • 23b Becker N, Carreira EM. Org. Lett. 2007; 9: 3857
    • 23c Minakata S, Okumura S, Nagamachi T, Takeda Y. Org. Lett. 2011; 13: 2966
    • 24a Shing TK. M, Wong WF, Cheng HM, Kwok WS, So KH. Org. Lett. 2007; 9: 753
    • 24b Tsantali GG, Dimtsas J, Tsoleridis CA, Takakis IM. Eur. J. Org. Chem. 2007; 258
  • 26 Jones RH, Robinson GC, Thomas EJ. Tetrahedron 1984; 40: 177
    • 27a Just G, Dahl K. Tetrahedron 1968; 24: 5251
    • 27b Kiegiel J, Poplawska M, Jozwik J, Kosior M, Jurczak J. Tetrahedron Lett. 1999; 40: 5605
    • 27c Das B, Mahender G, Holla H, Banerjee J. ARKIVOC 2005; (iii): 27
    • 27d Bhosale MS, Kurhade S, Prasad UV, Palle VP, Bhuniya D. Tetrahedron Lett. 2009; 50: 3948
    • 27e Bhosale S, Kurhade S, Vyas S, Palle VP, Bhuniya D. Tetrahedron 2010; 66: 9582
    • 28a Antony PM, Balaji GL, Iniyavan P, Ila H. J. Org. Chem. 2020; 85: 15422
    • 28b You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
    • 28c Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
    • 28d Khairnar PV, Lung T.-H, Lin Y.-J, Wu C.-Y, Koppolu SR, Edukondalu A, Karanam P, Lin W. Org. Lett. 2019; 21: 4219
    • 28e Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
    • 28f Tang S, He J, Sun Y, He L, She X. Org. Lett. 2009; 11: 3982
    • 29a Chapleur Y. Carbohydrate Mimics: Concepts and Methods . Wiley-VCH; Weinheim: 1998
    • 29b Hollingsworth RI, Wang G. Chem. Rev. 2000; 100: 4267
    • 29c Brasholz M, Reissig H.-U, Zimmer R. Acc. Chem. Res. 2009; 42: 45
    • 29d Kurteva VB, Afonso CA. M. Chem. Rev. 2009; 109: 6809
    • 30a Marco-Contelles J, de Opazo E. J. Org. Chem. 2002; 67: 3705
    • 30b Nath M, Mukhopadhyay R, Bhattacharjya A. Org. Lett. 2006; 8: 317
    • 30c Khiar N, Mallouk S, Valdivia V, Bougrin K, Soufiaoui M, Fernández I. Org. Lett. 2007; 9: 1255
    • 30d Kumar A, Srivastava S, Gupta G, Chaturvedi V, Sinha S, Srivastava R. ACS Comb. Sci. 2011; 13: 65

      For reports of sugar-based organic nanostructured materials, see:
    • 31a Ghosh R, Chakraborty A, Maiti DK, Puranik VG. Org. Lett. 2006; 8: 1061
    • 31b Maiti DK, Halder S, Pandit P, Chatterjee N, De Joarder D, Pramanik N, Saima Y, Patra A, Maiti PK. J. Org. Chem. 2009; 74: 8086
    • 32a Shing TK. M, So KH, Kwok WS. Org. Lett. 2009; 11: 5070
    • 32b Smellie AS, Fromm AI, Fabbiani F, Oswald ID. H, White FJ, Paton RM. Tetrahedron 2010; 66: 7155
    • 32c Smellie IA. S, Moggach SA, Paton RM. Tetrahedron Lett. 2011; 52: 95
    • 33a Mishra RC, Tewari N, Verma SS, Tripathi RP, Kumar M, Shukla PK. J. Carbohydr. Chem. 2004; 23: 353
    • 33b Benltifa M, Hayes JM, Vidal S, Gueyrard D, Goekjian PG, Praly J.-P, Kizilis G, Tiraidis C, Alexacou K.-M, Chrysina ED, Zographos SE, Leonidas DD, Archontis G, Oikonomakos NG. Bioorg. Med. Chem. 2009; 17: 7368
    • 34a Milller I, Jäger V. Tetrahedron Lett. 1982; 23: 4777
    • 34b Jager V, Schohe R. Tetrahedron 1984; 40: 2199
    • 34c Jager V, Milller I. Tetrahedron Lett. 1985; 41: 3519
    • 34d Jäger V, Schohe R, Paulus EF. Tetrahedron Lett. 1983; 24: 5501
    • 34e Colinas PA, Jager V, Lieberknechta A, Bravo RD. Tetrahedron Lett. 2003; 44: 1071
    • 34f Jäger V, Schroter D. Synthesis 1990; 556
    • 35a Zimmermann PJ, Lee JY, Hlobilova I, Endermann R, Häbich D, Jäger V. Eur. J. Org. Chem. 2005; 3450
    • 35b Lee JY, Schiffer G, Jäger V. Org. Lett. 2005; 7: 2317
  • 36 Sengupta T, Gayen KS, Pandit P, Maiti DK. Chem. Eur. J. 2012; 18: 1905
  • 37 Gallos JK, Koumbis AE. Curr. Org. Chem. 2003; 7: 585
    • 38a Kim D, Lee J, Shim PJ, Lim JI, Jo H, Kim S. J. Org. Chem. 2002; 67: 764
    • 38b Paek S.-M, Seo S.-Y, Kim S.-H, Jung J.-W, Lee Y.-S, Jung J.-K, Suh Y.-G. Org. Lett. 2005; 7: 3159
    • 38c Nair V, Suja TD. Tetrahedron 2007; 63: 12247
    • 38d Browder CC. Curr. Org. Synth. 2011; 8: 628
  • 39 Representative procedure for preparation of 3b: Oxime 1 (1 mmol) and alkene 2 (2.5 mmol) were dissolved in CH2Cl2 (10 mL), and MnVI-NPs (13 mg, 5 mol%) and NaIO4 (214 mg, 1 mmol) were added. The mixture was then stirred for 3.5–5.0 h at 25 °C, with the progress of the reaction being monitored by TLC. After completion of the reaction, the solvent was removed under reduced pressure at room temperature. The reaction mixture was filtered and washed with a mixture of ethyl acetate and cold water. The filtrate was transferred to a separatory funnel and extracted with EtOAc (3 × 30 mL). The combined organic extracts were washed with water (3 × 30 mL) and brine (1 × 30 mL) and then dried over anhydrous Na2SO4. After filtration, the solvent was removed under reduced pressure at room temperature. The residue was purified by column chromatography over silica gel (60–120 mesh) with ethyl acetate–petroleum ether as the eluent to furnish pure Δ2-isoxazoline 3b.3-(3,4-Dichlorophenyl)-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester (3b): Rf = 0.6 (1:4 ethyl acetate–petroleum ether); yield: 76% (218 mg, 0.76 mmol); yellow solid; mp 70 °C. 1H NMR (300 MHz, CDCl3): δ = 1.26 (3 H, t, J = 7.2 Hz), 3.49–3.55 (2 H, m), 4.21 (2 H, q, J = 7.2 Hz), 5.09–5.16 (1 H, m), 7.39–7.68 (2 H, m), 7.78 (1 H, s). 13C NMR (75 MHz, CDCl3): δ = 14.1, 38.4, 62.2, 78.6, 125.9, 126.1, 128.7, 130.9, 133.2, 134.7, 154.3, 169.7. FT-IR (KBr): 1030, 1397, 1734, 3140 cm–1. HRMS: m/z calcd for C12H12Cl2NO3 [M+ + H]: 288.0194; found: 288.0190.