Synthesis 2022; 54(20): 4561-4575
DOI: 10.1055/a-1863-3443
paper

Gram-Scale Synthesis of Substituted Triarylmethanes

a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
b   Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
,
Chun-Yi Lin
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
,
Shin-Mei Chen
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
› Author Affiliations
The authors would like to thank the Ministry of Science and Technology of the Republic of China (Taiwan) for the financial support (MOST 109-2113-M-037-014-MY3).


Abstract

A high-yield, open-vessel route for the facile-operational, gram-scale synthesis of functionalized triarylmethanes (TRAMs) is described­ via silica-coated magnetic nanoparticles of modified polyphosphoric­ acid (NiFe2O4@SiO2-PPA)-mediated intermolecular Friedel­–Crafts reaction of substituted aryl aldehydes with 2 equivalents of oxygenated arenes under environmentally friendly reaction conditions. Among the overall reaction process, only water was generated as the by-product. Various reaction conditions are investigated for efficient transformation.

Supporting Information



Publication History

Received: 26 April 2022

Accepted after revision: 27 May 2022

Accepted Manuscript online:
27 May 2022

Article published online:
21 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Duxbury DF. Chem. Rev. 1993; 93: 381
  • 2 Shchepinov MS, Korshun VA. Chem. Soc. Rev. 2003; 32: 170
  • 3 Nair V, Thomas S, Mathew SC, Abhilash KG. Tetrahedron 2006; 62: 6731
  • 4 Mondal S, Panda G. RSC Adv. 2014; 4: 28317
  • 5 Nambo M, Crudden CM. ACS Catal. 2015; 5: 4734
    • 6a Kshatriya R, Jejurkar VP, Saha S. Eur. J. Org. Chem. 2019; 3818
    • 6b Liu X, Wu X, Zhang L, Lin X, Huang D. Synthesis 2020; 52: 2311
    • 6c Irfana JC. P. A, Mercy AH, Ravindra S, Kataria R, Nandi GC. J. Org. Chem. 2020; 85: 3000
  • 7 Kraus GA, Jeon I, Nilsen-Hamilton MA, Awad M, Banerjee J, Parvin B. Molecules 2008; 13: 986
  • 8 Wilsdorf M, Leichnitz D, Reissig H.-U. Org. Lett. 2013; 15: 2494
  • 9 Li H, Yang J, Liu Y, Li Y. J. Org. Chem. 2009; 74: 6797
  • 10 Periasamy M, Jayakumar KN, Bharathi P. J. Org. Chem. 2000; 65: 3548
  • 11 Rodrigues SM. M, Previdi D, Baviera GS, Matias AA, Donate PM. Synthesis 2019; 51: 4498
  • 12 Bardajee GR. Beilstein J. Org. Chem. 2011; 7: 135
  • 13 Wang X, Wang Y, Du DM, Xu J. J. Mol. Catal. A: Chem. 2006; 255: 31
  • 15 Kothandapani J, Ganesan A, Vairaprakash P, Ganesan SS. Tetrahedron Lett. 2015; 56: 2238
  • 16 Podder S, Choudhury J, Roy UK, Roy S. J. Org. Chem. 2007; 72: 3100
  • 17 Reddy CS, Nagaraj A, Srinivas A, Reddy GP. Indian J. Chem. 2009; 48B: 248
  • 18 An LT, Ding FQ, Zou JP. Dyes Pigments 2008; 77: 478
  • 19 Singh K, Sharma S, Sharma A. J. Mol. Catal. A: Chem. 2011; 347: 34
  • 20 Prakash GK. S, Fogassy G, Olah GA. Catal. Lett. 2010; 138: 155
  • 21 Bachhav HM, Takale BS, Telvekar VN. Synth. Commun. 2013; 43: 1909
  • 22 Jaratjaroonphong J, Sathalalai S, Techasauvapak P, Reutrakul V. Tetrahedron Lett. 2009; 50: 6012
  • 23 Shanmuga P, Varma L. Indian J. Chem. Sect. B 2001; 40B: 1258
  • 24 Kang LQ, Gao H, Cai YQ. Monatsh. Chem. 2018; 149: 57
  • 25 Pasha MA, Nagashree S. Int. J. Res. Chem. Environ. 2013; 3: 54
  • 26 Lim CW, Lee IS. Nano Today 2010; 5: 412
  • 27 Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM. Chem. Rev. 2011; 111: 3036
  • 28 Li S, Lin MM, Kim HH, Topark MS, Kim DK, Muhammed M. Nano Rev. 2010; 1: 4883
  • 29 Astruc D, Lu F, Aranzaes JR. Angew. Chem. Int. Ed. 2005; 44: 7852
  • 30 Yamada M, Arisawa M. Tetrahedron Lett. 2020; 61: 151422
  • 31 Lin J.-S, Li T.-T, Liu J.-R, Jiao G.-Y, Gu Q.-S, Cheng J.-T, Guo Y.-L, Hong X, Liu X.-Y. J. Am. Chem. Soc. 2019; 14: 1074
  • 32 Yue C, Na F, Fang X, Cao Y, Antilla JC. Angew. Chem. Int. Ed. 2018; 57: 11004
  • 33 Wong YF, Wang Z, Sun J. Org. Biomol. Chem. 2016; 14: 5751
  • 34 Saha S, Alamsetti SK, Schneider C. Chem. Commun. 2015; 51: 1461
  • 35 Zhuo M.-H, Jiang Y.-J, Fan Y.-S, Gao Y, Liu S, Zhang S. Org. Lett. 2014; 16: 1096
  • 36 Zhang Z, Wang H, Qiu N, Kong Y, Zeng W, Zhang Y, Zhao J. J. Org. Chem. 2018; 83: 8710
  • 37 Zhang J, Bellomo A, Creamer AD, Dreher SD, Walsh PJ. J. Am. Chem. Soc. 2012; 134: 13765
    • 38a Eshghi H, Khojastehnezhad A, Moeinpour F, Bakavoli M, Zeinabi N, Allameh S. Res. Chem. Intermed. 2015; 41: 7915
    • 38b Chaudhuri A, Mandal M, Mandal K. J. Alloys Compd. 2009; 487: 698
  • 39 Khojastehnezhad A, Moeinpour F, Javid A. Polycycl. Aromat. Comp. 2019; 39: 404
  • 40 Moeinpour F, Khojastehnezhad A. Arabian J. Chem. 2017; 10: S3468
  • 41 Vajar S, Mokhtary M. Polycycl. Aromat. Comp. 2019; 39: 111
  • 42 Vekariya RH, Prajapati NP, Patel HD. Synth. Commun. 2016; 46: 197
  • 43 CCDC 1981539 (4e) and 1981540 (4ah-1) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 44 Li P, Huang Y, Hu X, Dong X.-Q, Zhang X. Org. Lett. 2017; 19: 3855
  • 45 Balakrishna B, Bauzá A, Frontera A, Vidal-Ferran A. Chem. Eur. J. 2016; 22: 10607
  • 46 Fischer-Cornelssen KA. Arzneimittelforschung 1984; 34: 125
  • 47 Woggon B, Angst J, Bartels M, Heinrich K, Hippius H, Koukkou M, Krebs E, Kufferle B, Muller-Oerlinghausen B, Poldinger W. Neuropsychobiology 1984; 11: 116