Planta Med 2020; 86(12): 805-821
DOI: 10.1055/a-1196-1906
Biological and Pharmacological Activity
Reviews

A Systematic Review on Secondary Metabolites of Paecilomyces Species: Chemical Diversity and Biological Activity

Xiu-Qi Li
1   Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Peopleʼs Republic of China
2   Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
,
Kuo Xu
1   Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Peopleʼs Republic of China
,
Xin-Min Liu
1   Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Peopleʼs Republic of China
,
1   Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Peopleʼs Republic of China
› Author Affiliations
Supported by: National Natural Science Foundation of China 31700295
Supported by: Agricultural Science and Technology Innovation Program of China ASTIP-TRIC05

Abstract

Fungi are well known for their ability to synthesize secondary metabolites, which have proven to be a rich resource for exploring lead compounds with medicinal and/or agricultural importance. The genera Aspergillus, Penicillium, and Talaromyces are the most widely studied fungal groups, from which a plethora of bioactive metabolites have been characterized. However, relatively little attention has been paid to the genus Paecilomyces, which has been reported to possess great potential for its application as a biocontrol agent. Meanwhile, a wide structural array of metabolites with attractive bioactivities has been reported from this genus. This review attempts to provide a comprehensive overview of Paecilomyces species, with emphasis on the chemical diversity and relevant biological activities of these metabolic products. Herein, a total of 148 compounds and 80 references are cited in this review, which is expected to be beneficial for the development of medicines and agrochemicals in the near future.

Supporting Information



Publication History

Received: 25 March 2020

Accepted after revision: 30 May 2020

Article published online:
09 July 2020

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Bainier G. Mycothèque de lʼécole de Pharmacie. XI. Paecilomyces, genre nouveau de Mucédinées. Bull Soc Mycol Fr 1907; 23: 26-27
  • 2 Luangsa-Ard JJ, Hywel-Jones NL, Samson RA. The polyphyletic nature of Paecilomyces sensu lato based on 18S-generated rDNA phylogeny. Mycologia 2004; 96: 773-780
  • 3 Frisvad JC. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front Microbiol 2014; 5: 773
  • 4 Mioso R, Toledo Marante FJT, de Laguna IH. The chemical diversity of the Ascomycete fungus Paecilomyces variotii . Appl Biochem Biotechnol 2015; 177: 781-791
  • 5 Zimmermann G. The entomopathogenic fungi Isaria farinose (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Technol 2008; 18: 865-901
  • 6 Zhang P, Mándi A, Li XM, Du FY, Wang JN, Li X, Kurtán T, Wang BG. Varioxepine A, a 3H-oxepine-containing alkaloid with a new oxa-cage from the marine algal-derived endophytic fungus Paecilomyces variotii . Org Lett 2014; 16: 4834-4837
  • 7 Zhang P, Li XM, Wang JN, Li X, Wang BG. New butenolide derivatives from the marine-derived fungus Paecilomyces variotii with DPPH radical scavenging activity. Phytochem Lett 2015; 11: 85-88
  • 8 Zhang P, Li XM, Wang JN, Li X, Wang BG. Prenylated indole alkaloids from the marine-derived fungus Paecilomyces variotii . Chin Chem Lett 2015; 26: 313-316
  • 9 Zhang P, Li XM, Wang JN, Wang BG. Oxepine-containing diketopiperazine alkaloids from the algal-derived endophytic fungus Paecilomyces variotii EN-291. Helv Chim Acta 2015; 98: 800-804
  • 10 Zhang P, Li XM, Mao XX, Mándi A, Kurtán T, Wang BG. Varioloid A, a new indolyl-6,10b-dihydro-5aH-[1]benzofuro[2,3-b]indole derivative from the marine alga-derived endophytic fungus Paecilomyces variotii EN-291. Beilstein J Org Chem 2016; 12: 2012-2018
  • 11 Chang HT, Lin MH, Hwang IH, Chen TJ, Lin HC, Hou MC, Hwang SJ. Scientific publications in gastroenterology and hepatology in Taiwan: An analysis of Web of Science from 1993 to 2013. J Chin Med Assoc 2017; 80: 80-85
  • 12 Samson RA. Paecilomyces and some allied Hyphomycetes. Stud Mycol 1974; 6: 1-119
  • 13 Inglis PW, Tigano MS, Biology M. Identification and taxonomy of some entomopathogenic Paecilomyces spp. (Ascomycota) isolates using rDNA-ITS sequences. Genet Mol Biol 2006; 29: 132-136
  • 14 Oborník M, Jirku M, Dolezel D. Phylogeny of mitosporic entomopathogenic fungi: is the genus Paecilomyces polyphyletic?. Can J Microbiol 2001; 47: 813-819
  • 15 Luangsa-ard JJ, Hywel-Jones NL, Manoch L, Samson RA. On the relationships of Paecilomyces sect. Isarioidea species. Mycol Res 2005; 109: 581-589
  • 16 Gams W, Hodge KT, Samson RA, Korf RP, Seifert KA. (1684) Proposal to conserve the name Isaria (anamorphic fungi) with a conserved type. Taxon 2005; 54: 537
  • 17 Hodge KT, Gams W, Samson RA, Korf RP, Seifert KA. Lectotypification and status of Isaria pers.: fr. Taxon 2005; 54: 485-489
  • 18 Cho YJ, Hwang HJ, Kim SW, Song CH, Yun JW. Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. J Biotechnol 2002; 95: 13-23
  • 19 Wang L, Li Y, Yu P, Xie Z, Luo Y, Lin Y. Biodegradation of phenol at high concentration by a novel fungal strain Paecilomyces variotii JH6. J Hazard Mater 2010; 183: 366-371
  • 20 Madeira JV, Macedo JA, Macedo GA. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii . Bioresour Technol 2011; 102: 7343-7348
  • 21 Atkins SD, Clark IM, Pande S, Hirsch PR, Kerry BR. The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus . FEMS Microbiol Ecol 2005; 51: 257-264
  • 22 Lara J, Acosta N, Betancourt C, Vincente N, Rodríguez R. Biological control of Meloidogyne incognita in tomato in Puerto Rico. Nematropica 1996; 26: 143-152
  • 23 Kiewnick S, Sikora RA. Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol Control 2006; 38: 179-187
  • 24 Yang F, Abdelnabby H, Xiao Y. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum . Microb Pathog 2015; 89: 169-176
  • 25 Wraight SP, Carruthers RI, Jaronski ST, Bradley CA, Garza CJ, Galaini-Wraight S. Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silverleaf whitefly, Bemisia argentifolii . Biol Control 2000; 17: 203-217
  • 26 Asaff A, Cerda-Garcia-Rojas C, de la Torre M. Isolation of dipicolinic acid as an insecticidal toxin from Paecilomyces fumosoroseus . Appl Microbiol Biotechnol 2005; 68: 542-547
  • 27 Kavková M, Čurn V. Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) as a potential mycoparasite on Sphaerotheca fuliginea (Ascomycotina: Erysiphales). Mycopathologia 2005; 159: 53-63
  • 28 Han JH, Jin BR, Kim JJ, Lee SY. Virulence of entomopathogenic fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the microbial control of Spodoptera exigua . Mycobiology 2014; 42: 385-390
  • 29 Betina V. Biological effects of the antibiotic brefeldin A (decumbin, cyanein, ascotoxin, synergisidin): a retrospective. Folia Microbiol 1992; 37: 3-11
  • 30 Wang J, Huang Y, Fang M, Zhang Y, Zheng Z, Zhao Y, Su W. Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis . FEMS Immunol Med Microbiol 2002; 34: 51-57
  • 31 Xu L, He Z, Xue J, Chen X, Wei X. β-Resorcylic acid lactones from a Paecilomyces fungus. J Nat Prod 2010; 73: 885-889
  • 32 Xu L, Xue J, Zou Y, He S, Wei X. Three new β-resorcylic acid lactones from Paecilomyces sp. SC0924. Chin J Chem 2012; 30: 1273-1277
  • 33 Xu LX, Wu P, Wei HH, Xue JH, Hu XP, Wei XY. Paecilomycins J–M, four new β-resorcylic acid lactones from Paecilomyces sp. SC0924. Tetrahedron Lett 2013; 54: 2648-2650
  • 34 Xu L, Wu P, Xue J, Molnar I, Wei X. Antifungal and cytotoxic β-resorcylic acid lactones from a Paecilomyces species. J Nat Prod 2017; 80: 2215-2223
  • 35 Petersen F, Fredenhagen A, Mett H, Lydon NB, Delmendo R, Jenny HB, Peter H. Paeciloquinones A, B, C, D, E and F: new potent inhibitors of protein tyrosine kinases produced by Paecilomyces carneus . J Antibiot 1995; 48: 191-198
  • 36 Wen L, Lin YC, She ZG, Du DS, Chan WL, Zheng ZH. Paeciloxanthone, a new cytotoxic xanthone from the marine mangrove fungus Paecilomyces sp. (Tree1–7). J Asian Nat Prod Res 2008; 10: 133-137
  • 37 Fujii N, Yamashita Y, Ando K, Agatsuma T, Saitoh Y, Gomi K, Nishiie Y, Nakano H. UCE1022, a new antitumor antibiotic with topoisomerase I mediated DNA cleavage activity, from Paecilomyces . J Antibiot 1994; 47: 949-951
  • 38 Yamashita Y, Saitoh Y, Ando K, Takahashi K, Ohno H, Nakano H. Saintopin, a new antitumor antibiotic with topoisomerase II dependent DNA cleavage activity, from Paecilomyces . J Antibiot 1990; 43: 1344-1346
  • 39 Guo Z, She Z, Shao C, Wen L, Liu F, Zheng Z, Lin Y. 1H and 13C NMR signal assignments of paecilin A and B, two new chromone derivatives from mangrove endophytic fungus Paecilomyces sp. (tree 1–7). Magn Reson Chem 2007; 45: 777-780
  • 40 Ayer WA, Craw PA, Nozawa KJ. Two 1H-naphtho[2,3-c]pyran-1-one metabolites from the fungus Paecilomyces variotii . Can J Chen 1991; 69: 189-191
  • 41 Wen L, Chen G, She Z, Yan C, Cai J, Mu L. Two new paeciloxocins from a mangrove endophytic fungus Paecilomyces sp. Russ Chem Bull 2010; 59: 1656-1659
  • 42 Li D, Shigetomi K, Mitsuhashi S, Ubukata M. Maillard reaction inhibitors produced by Paecilomyces sp. Biosci Biotechnol Biochem 2013; 77: 2499-2501
  • 43 Lu R, Liu X, Gao S, Zhang W, Peng F, Hu F, Huang B, Chen L, Bao G, Li C, Li Z. New tyrosinase inhibitors from Paecilomyces gunnii . J Agric Food Chem 2014; 62: 11917-11923
  • 44 Talontsi FM, Nwemeguela Kenla TJ, Dittrich B, Douanla-Meli C, Laatsch H. Paeciloside A, a new antimicrobial and cytotoxic polyketide from Paecilomyces sp. strain CAFT156. Planta Med 2012; 78: 1020-1023
  • 45 Namikoshi M, Kobayashi H, Yoshimoto T, Meguro S. Paecilospirone, a unique spiro[chroman-2, 1 V′(3′H)-isobenzofuran] derivative isolated from tropical marine fungus Paecilomyces sp. Chem Lett 2000; 29: 308-309
  • 46 Wang H, Hong J, Yin J, Moon HR, Liu Y, Wei X, Oh DC, Jung JH. Dimeric octaketide spiroketals from the jellyfish-derived fungus Paecilomyces variotii J08NF-1. J Nat Prod 2015; 78: 2832-2836
  • 47 Liu J, Li F, Kim EL, Li JL, Hong J, Bae KS, Chung HY, Kim HS, Jung JH. Antibacterial polyketides from the jellyfish-derived fungus Paecilomyces variotii . J Nat Prod 2011; 74: 1826-1829
  • 48 Elbandy M, Shinde PB, Hong JK, Bae KS, Kim M, Lee SM, Jung J. α-Pyrones and yellow pigments from the sponge-derived fungus Paecilomyces lilacinus . Bull Korean Chem Soc 2009; 30: 188-192
  • 49 Hashida J, Niitsuma M, Iwatsuki M, Mori M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Nonaka K, Ui H, Masuma R, Otoguro K, Yamada H, Shiomi K, Omura S. Pyrenocine I, a new pyrenocine analog produced by Paecilomyces sp. FKI-3573. J Antibiot (Tokyo) 2010; 63: 559-561
  • 50 Wu HY, Wang YL, Tan JL, Zhu CY, Li DX, Huang R, Zhang KQ, Niu XM. Regulation of the growth of cotton bollworms by metabolites from an entomopathogenic fungus Paecilomyces cateniobliquus . J Agric Food Chem 2012; 60: 5604-5608
  • 51 Hirota A, Nakagawa M, Hirota H. Structure of paecilospirone, a new antibiotic from Paecilomyces . Agric Biol Chem 1991; 55: 1187-1188
  • 52 Rahbæk L, Sperry S, Piper JE, Crews PJ. Deoxynortrichoharzin, a new polyketide from the saltwater culture of a sponge-derived Paecilomyces fungus . J Nat Prod 1998; 61: 1571-1573
  • 53 Aldridge DC, Carman RM, Richard B. A new tricarboxylic acid anhydride from Paecilomyces variotii . J Chem Soc Perkin Trans 1 1980; 2134-2135
  • 54 Fields S, Mireles-Lo L, Gerwick B. Hydroxycornexistin: a new phytotoxin from Paecilomyces variotii . J Nat Prod 1996; 59: 698-700
  • 55 Kikuchi H, Miyagawa Y, Sahashi Y, Inatomi S, Haganuma A, Nakahata N, Oshima Y. Novel trichothecanes, paecilomycine A, B, and C, isolated from entomopathogenic fungus, Paecilomyces tenuipes . Tetrahedron Lett 2004; 45: 6225-6228
  • 56 Kikuchi H, Miyagawa Y, Sahashi Y, Inatomi S, Haganuma A, Nakahata N, Oshima Y. Novel spirocyclic trichothecanes, spirotenuipesine A and B, isolated from entomopathogenic fungus, Paecilomyces tenuipes . J Org Chem 2004; 69: 352-356
  • 57 Kikuchi H, Miyagawa Y, Nakamura K, Sahashi Y, Inatomi S, Oshima Y. A novel carbon skeletal trichothecane, tenuipesine A, isolated from an entomopathogenic fungus, Paecilomyces tenuipes . Org Lett 2004; 6: 4531-4533
  • 58 Zhou K, Zhao XL, Han LP, Cao MM, Chen C, Shi BZ, Luo D. Paecilomycines A and B, novel diterpenoids, isolated from insect-pathogenic fungi Paecilomyces sp. ACCC 37762. Helv Chim Acta 2015; 98: 642-649
  • 59 Bilal S, Ali L, Khan AL, Shahzad R, Asaf S, Imran M, Kang SM, Kim SK, Lee IJ. Endophytic fungus Paecilomyces formosus LHL10 produces sester-terpenoid YW3548 and cyclic peptide that inhibit urease and α-glucosidase enzyme activities. Arch Microbiol 2018; 200: 1493-1502
  • 60 Kwon HC, Zee SD, Cho SY, Choi SU, Lee KR. Cytotoxic ergosterols from Paecilomyces sp. J300. Arch Pharm Res 2002; 25: 851-855
  • 61 Mosadeghzad Z, Zuriati Z, Asmat A, Gires U, Wickneswari R, Pittayakhajonwut P, Farahani G. Chemical components and bioactivity of the marine-derived fungus Paecilomyces sp. Collected from Tinggi Island, Malaysia. Chem Nat Compd 2013; 49: 621-625
  • 62 Isaka M, Palasarn S, Kocharin K, Nigel L. Comparison of the bioactive secondary metabolites from the scale insect pathogens, anamorph Paecilomyces cinnamomeus, and teleomorph Torrubiella luteorostrata . J Antibiot 2007; 60: 577-581
  • 63 Kwon HC, Kim KR, Zee SD, Cho SY, Lee K. A new indolinepeptide from Paecilomyces sp. J300. Arch Pharm Res 2004; 27: 604
  • 64 Zheng Y, Zhang J, Wei L, Shi M, Wang J, Huang J. Gunnilactams A−C, macrocyclic tetralactams from the mycelial culture of the entomogenous fungus Paecilomyces gunnii . J Nat Prod 2017; 80: 1935-1938
  • 65 Isaka M, Palasarn S, Lapanun S, Sriklung K. Paecilodepsipeptide A, an antimalarial and antitumor cyclohexadepsipeptide from the insect pathogenic fungus Paecilomyces cinnamomeus BCC 9616. J Nat Prod 2007; 70: 675-678
  • 66 Schmidt K, Günther W, Stoyanova S, Schubert B, Li Z, Hamburger M. Militarinone A, a neurotrophic pyridone alkaloid from Paecilomyces militaris . Org Lett 2002; 4: 197-199
  • 67 Schmidt K, Riese U, Li Z, Hamburger M. Novel tetramic acids and pyridone alkaloids, militarinones B, C, and D, from the insect pathogenic fungus Paecilomyces militaris . J Nat Prod 2003; 66: 378-383
  • 68 Cheng Y, Schneider B, Riese U, Schubert B, Li Z, Hamburger M. Farinosones A−C, neurotrophic alkaloidal metabolites from the entomogenous deuteromycete Paecilomyces farinosus . J Nat Prod 2004; 67: 1854-1858
  • 69 Mizushina Y, Suzuki-Fukudome H, Takeuchi T, Takemoto K, Kuriyama I, Yoshida H, Kamisuki S, Sugawara F. Formosusin A, a novel specific inhibitor of mammalian DNA polymerase β from the fungus Paecilomyces formosus . Bioorg Med Chem 2014; 22: 1070-1076
  • 70 Yun K, Leutou AS, Rho JR, Son BW. Formoxazine, a new pyrrolooxazine, and two amines from the marine-mudflat-derived fungus Paecilomyces formosus . Bull Korean Chem Soc 2016; 37: 103-104
  • 71 Lang G, Blunt JW, Cummings NJ, Cole AL, Munro M. Paecilosetin, a new bioactive fungal metabolite from a New Zealand isolate of Paecilomyces farinosus . J Nat Prod 2005; 68: 810-811
  • 72 Su J, Yang M. Huperzine A production by Paecilomyces tenuis YS-13, an endophytic fungus isolated from Huperzia serrata . Nat Prod Res 2015; 29: 1035-1041
  • 73 Liu YJ, Zhai CY, Liu Y, Zhang KQ. Nematicidal activity of Paecilomyces spp. and isolation of a novel active compound. J Microbiol 2009; 47: 248-252
  • 74 Cabrera GM, Butler M, Rodriguez MA, Godeas A, Haddad R, Eberlin M. A sorbicillinoid urea from an intertidal Paecilomyces marquandii . J Nat Prod 2006; 69: 1806-1808
  • 75 Kanai Y, Fujimaki T, Kochi S, Konno H, Kanazawa S, Tokumasu S. Paeciloxazine, a novel nematicidal antibiotic from Paecilomyces sp. J Antibiot 2004; 57: 24-28
  • 76 Uchida R, Shiomi K, Inokoshi J, Masuma R, Kawakubo T, Tanaka H, Iwai Y, Omura S. Kurasoins A and B, new protein farnesyltransferase inhibitors produced by Paecilomyces sp. FO-3684. J Antibiot 1996; 49: 932-934
  • 77 Ui H, Shiomi K, Suzuki H, Hatano H, Morimoto H, Yamaguchi Y, Masuma R, Sakamoto K, Kita K, Miyoshi H. Paecilaminol, a new NADH-fumarate reductase inhibitor, produced by Paecilomyces sp. FKI-0550. J Antibiot 2006; 59: 591-596
  • 78 Wang H, Hong J, Yin J, Liu J, Liu Y, Choi JS, Jung JH. Paecilonic acids A and B, bicyclic fatty acids from the jellyfish-derived fungus Paecilomyces variotii J08NF-1. Bioorg Med Chem Lett 2016; 26: 2220-2223
  • 79 Nam KS, Jo YS, Kim YH, Hyun JW, Kim H. Cytotoxic activities of acetoxyscirpenediol and ergosterol peroxide from Paecilomyces tenuipes . Life Sci 2001; 69: 229-237
  • 80 Putri SP, Kinoshita H, Ihara F, Igarashi Y, Nihira T. Farinomalein, a maleimide-bearing compound from the entomopathogenic fungus Paecilomyces farinosus . J Nat Prod 2009; 72: 1544-1546
  • 81 Cheng Y, Schneider B, Riese U, Schubert B, Li Z, Hamburger M. (+)-N-Deoxymilitarinone A, a neuritogenic pyridone alkaloid from the insect pathogenic fungus Paecilomyces farinosus . J Nat Prod 2006; 69: 436-438